

POSTER PRESENTATION

Open Access

Placental nitrosative stress and in utero exposure to particulate matter

Nelly Saenen^{1*}, Karen Vrijens¹, Bram Janssen¹, Narjes Madhloum¹, Martien Peusens¹, Wilfried Gyselaers², Charlotte Vanpoucke³, Wouter Lefebvre⁴, Harry Roels¹, Tim Nawrot¹

From Methods in Epidemiology Symposium Leuven, Belgium. 17 September 2015

Background and aims

A wide variety of adverse health effects on both fetuses and neonates have been ascribed to particulate matter (PM) air pollution. Recent evidence suggests that PM exposure results in increased oxidative and nitrosative stress. In the ENVIRONAGE birth cohort, we investigated the association of placental 3-nitrotyrosine (3-NT) with PM exposure during various time windows of pregnancy.

Methods

3-NT levels were measured in 341 placental tissue samples, selected from the ENVIRONAGE birth cohort, using a competitive ELISA. Daily PM_{10} and $PM_{2.5}$ exposure levels were interpolated for each mother's residential address using a spatiotemporal interpolation method in combination with a dispersion model. Multiple linear regression models were used to assess the association between 3-NT and PM exposure for different pregnancy windows.

Results

The placental 3-NT level, adjusted for gender, gestational age, maternal age, pre-gestational BMI, smoking status, and warm or cold period at delivery, raised with 31.0% (p=0.0008) for an interquartile range increment in whole pregnancy $PM_{2.5}$ exposure. The association was driven by $PM_{2.5}$ exposure during the first trimester (25.7 %, p=0.01) and second trimester (37.0%, p=0.003) of pregnancy.

Conclusions

We observed a positive association between 3-NT levels in the placenta and PM_{2.5} exposure during whole pregnancy. Our findings, which are in line with experimental evidence on cigarette smoke and diesel exhaust exposure, indicate the influence of PM exposure during pregnancy on placental oxidative stress. The impact of placental 3-NT with regard to PM exposure on newborn's health needs further elucidation.

Authors' details

¹Hasselt University, Diepenbeek, Belgium. ²Department of Obstetrics, East-Limburg Hospital, Genk, Belgium. ³Belgian Interregional Environment Agency, Brussles, Belgium. ⁴Flemish Institute for Technological Research (VITO), Mol, Belgium.

Published: 17 September 2015

doi:10.1186/2049-3258-73-S1-P17

Cite this article as: Saenen *et al.*: Placental nitrosative stress and in utero exposure to particulate matter. *Archives of Public Health* 2015 73(Suppl 1):P17

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

¹Hasselt University, Diepenbeek, Belgium Full list of author information is available at the end of the article

