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Abstract 

Objective 

To correct cervical cancer mortality rates for death cause certification problems in Belgium 
and to describe the corrected trends (1954-1997) using Bayesian models. 

Method  

Cervical cancer (cervix uteri (CVX), corpus uteri (CRP), not otherwise specified (NOS) uterus 
cancer and other very rare uterus cancer (OTH) mortality data were extracted from the WHO 
mortality database together with population data for Belgium and the Netherlands.  

Different ICD (International Classification of Diseases) were used over time for death cause 
certification.  In the Netherlands, the proportion of not-otherwise specified uterine cancer 
deaths was small over large periods and therefore internal reallocation could be used to 
estimate the corrected rates cervical cancer mortality.  In Belgium, the proportion of 
improperly defined uterus deaths was high. Therefore, the age-specific proportions of uterus 
cancer deaths that are probably of cervical origin for the Netherlands was applied to Belgian 
uterus cancer deaths to estimate the corrected number of cervix cancer deaths (corCVX).   

A Bayesian loglinear Poisson-regression model was performed to disentangle the separate 
effects of age, period and cohort.  

Results 

The corrected age standardized mortality rate (ASMR) decreased regularly from 9.2/100 000 
in the mid 1950s to 2.5/ 100,000 in the late 1990s. Inclusion of age, period and cohort into 
the models were required to obtain an adequate fit.  Cervical cancer mortality increases with 
age, declines over calendar period and varied irregularly by cohort. 

Conclusion 

Mortality increased with ageing and declined over time in most age-groups, but varied 
irregularly by birth cohort. In global, with some discrete exceptions, mortality decreased for 
successive generations up to the cohorts born in the 1930s.  This decline stopped for cohorts 
born in the 1940s and thereafter.  For the youngest cohorts, even a tendency of increasing 
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risk of dying from cervical cancer could be observed, reflecting increased exposure to risk 
factors.  The fact that this increase was limited for the youngest cohorts could be explained 
as an effect of screening.   

Bayesian modeling provided similar results compared to previously used classical Poisson 
models. However, Bayesian models are more robust for estimating rates when data are 
sparse (youngest age groups, most recent cohorts) and can be used to for predicting future 
trends. 

Keywords 
Cervical cancer, trend analysis, mortality, Bayesian analysis, age-cohort-period modelling  

Introduction  

Previous trend analyses on cervical cancer mortality in Belgium, including a tentative solution 
for  the ‘not otherwise specified’ (NOS) uterine cancers certification problem, have shown a 
50% decline over the past 4 decades (1).  Age-period-cohort (APC) models, based on log-
linear Poisson regression, have been used to describe trends and to disentangle the 
separate effects that have driven these trends (2-4).  APC modeling has certain intrinsic 
shortcoming such as the identifiability problem due to the linear interdependency of the three 
components (age, period and cohort, where cohort=period-age) (5). However, non-linear 
changes are identifiable (5) and several solutions including imposition of certain constraints, 
such as fixing age-effects, allow a rather straight forward estimation of period and cohorts 
effects (6).  Cohort effects can be interpreted as the consequence of the changing exposure 
to risk factors whereas period effects can be explained as due to improvements in 
oncological treatment or increased screening and treatment of screen-detected lesions (7). 
An APC analysis of Belgian cervical cancer mortality data from the period 1954-1994, not 
adjusted for NOS, revealed strong cohort effects, indicating an increased risk for women 
born after 1935-1960, which reflexes changes in sexual behavior and increased exposure to 
HPV infection of these generations (7).  This cohort effect is observed in most industrialized 
countries and corresponds with the sexual revolution and availability of oral contraception 
since the 1960s.  In Belgium, the cohort effect increased less steeply than in the UK.  The 
difference between both countries can most plausibly be explained by screening that 
counterbalanced to a certain degree the cohort effect in Belgium, whereas in England it was 
largely unaffected due to poor quality screening up to the mid 1980s (8).  Besides, revealing 
some evidence of changed exposure to carcinogenic agents and protective effects from Pap 
smear screening, APC models also allow prediction of future trends.  

Bayesian methods are becoming more frequent in epidemiological research, including APC 
models.  In Bayesian methods, both the data and model parameter are considered to be 
random quantities (9,10). The likelihood function is considered to define how likely is the 
data, given a particular value of the parameter of the model. The parameters of the model 
are regarded as unknown quantities which can have a probability distribution referred to as 
prior distribution. This prior distribution can be based on the evidence from previous studies 
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or on subjective priori beliefs. The joint posterior density function is then obtained after 
combining the prior probability density function for all the model parameters with the 
likelihood function. Due to some complexity that may arise while implementing the Bayesian 
methods, much work has been carried out in developing simulation-based methods called 
Markov Chain Monte Carlo (MCMC) methods using Gibbs sampling. This simulation method 
has been incorporated into a package called WinBugs (11). More information about MCMC, 
Gibbs sampling and WinBugs can be found in the specialized literature (10-12). Detailed 
descriptions of Bayesian APC models can be found elsewhere (13-16). Comparing with the 
classical APC models which zero counts or sparse data in the young and old age groups 
may lead to problems of instability in parameter estimates, the zero counts or sparse data in 
Bayesian framework do not pose any implementation problems when fitting APC models.  

In this paper, our objective is to apply Bayesian APC models, following procedures proposed 
by Bashir and Estève (15), and to describe the influence of age, period, and cohort effects on 
corrected cervical cancer (corCVX)  mortality data in Belgium (1954-1997).  

Materials and methods 

Source of data 

In order to study trends of cervical cancer mortality, we downloaded the World Health 
Organisation (WHO) mortality database (http://www.who.int/whosis/mort/download/en/) and 
extracted data regarding deaths from uterine cancers together with the population of women 
living in European countries.  For Belgium, data were available for the period 1954-1997.  
Two major uterine cancers can be distinguished: cervix uteri cancer (CVX) and corpus uteri 
cancer (CRP), besides some other very rare cancers such as placenta cancer (OTH).  
However, often the death cause certification only contains the information “cancer from the 
uterus not otherwise specified (NOS).  Death causes were coded using the subsequent 
International Statistical Classification of Diseases, Injuries, and Causes of Deaths (ICD): 
ICD-7 for the period 1954-1967, ICD-8 for the period 1968-1978, and ICD-9 for the period 
1979-1997.   

In all ICD editions, separate codes were foreseen to identify cervical cancer (171 in the 7th, 
180 in the 8th and 9th, and C53 in the 10th edition.  Corpus uteri cancer and uterus NOS 
cancer were codified separately in most editions (172 [ICD-7], 182 [ICD-9] and C54 [ICD-10] 
for corpus cancer; 174 [ICD-7], 179 [ICD-9] and C55 [ICD-10] for uterus NOS cancer.  
However, in the 8th edition, 182 was used for both corpus and uterus NOS cancer.  They 
could only be distinguished with the 4th digit (182.0 for corpus cancer and 182.9 for uterus 
NOS cancer), but distinction was in many countries not possible by lack of this 4th digit.  The 
rare other cancers of the uterus were coded with 171 in the 7th edition, with 181 in the 8th and 
9th edition and C57/C58 in the 10th edition.    

Below, we explain how the number of deaths from cervix uteri cancer (corCVX) can be 
estimated from the number of deaths certified as originating from the uterine cervix (CVX), 
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from the uterine corpus (CRP), from the uterus not otherwise specified (NOS), or from the 
combination of CRP or NOS (CRPNOS or CRPNOSOTH). 

Reallocation rules  

According to Loos et al, when the proportion of NOS of all uterus cancer is less then 25%, 
adjustments can be based using allocation rule 1, assuming that the NOS death certification 
is allocated at random (17):  

 

                              corCVXay= CVXay + NOSay* CVXay/(CVXay+CRPay) (Rule 1) 

 

where the indices a and y stand for age group and year at death, respectively.   

If this assumption of random allocation would not correspond with the truth, the error would 
be limited since the rule is only applied when the proportion of NOS is small. In Belgium, 
however, this proportion always was greater than 25% and therefore use of a representative  
external template country with low NOS proportion such as the Netherlands is preferred as a 
more reliable basis for reallocation (1,18).  Data from the Netherlands were downloaded from 
the same WHO mortality database. The Netherlands (NL) showed a low proportion of NOS 
for the periods 1955-1962 and 1972-2004 and the number of corCVXay could be computed 
by applying allocation rule 1 (18,19).  For this period, proportion of total uterus cancer that is 
probably of cervical origin is computed as pcorCVXay= corCVXay/UTay, where UTay= 
CVXay+CRPay+NOSay . 

For the period, 1963-1969, where the proportion of NOS was greater than 25% and the 
periods 1950-1954 and 1970-1971 where combined codes were used, pcorCVXay was 
obtained through imputation given the data available from the periods where allocation Rule 
1 was applied. To apply the imputation method, the periods with proportion of NOSay > 25% 
or the combined codes (CRPNOSay and CRPNOSOTHay) were regarded as missing 
observations (20-22). We then applied the imputation method by regressing the logit of 
pcorCVXay (dependent variable) on the interaction between age and year. The logistic 
transformation was applied to avoid values to be negative or greater than unity.  

 

0 1

ˆ ˆ ˆˆ( ) ( * )ˆ1 a y
pcorCVXlogit pcorCVX log b b age year
pcorCVX

⎛ ⎞
= = +⎜ ⎟⎜ ⎟−⎝ ⎠

 (Rule 2) 

 

We used a source period of six years where the proportion of NOS was <25% to compute 
the proportion pcorCVX in the preceding or in-between periods with missing data. The 
source period 1955-60 was used to estimate pcorCVX for the preceding target period 1950-
54 and the source periods 1960-62 and 1972-74 were used for the in-between period 1963-
71 (Figure 1). 
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The proportions pcorCVXay obtained after application of Rules 1 & 2 for the Netherlands (NL) 
were applied on the total number of uterus cancers deaths from Belgium to compute the 
corrected number of cervical cancer deaths in Belgium (BE)  

corCVXayBE
 = UTayBE * pcorCVXayNL (Rule 3) 

Figure 1. Pictorial description of imputation method applied to data from the Netherlands 

 

 
 
Identification of age groups, calendar periods and birth cohorts 

The cervical cancer mortality and population data was stratified into A (A=13) categories: 
thirteen 5-year age groups (20-24, 25-29, […] 80-84). Calendar time was grouped into 5-year 
period bands (1954-1958, 1959-1963, […] 1994-1998) indexed as p (p = 1, 2, […] P), with 
P=9 except for the last period (1994-1998) which contains only 4-years. Through the 13 age 
groups and 9 periods, 21 cohorts can be considered, indexed as c (c = A + p - a). Because 
intervals for age and period categories are both 5 years wide, a birth cohort spans 10 years. 
Successive cohorts are overlapping partially and are identified by the central year 1874, 
1879, 1884, […] 1994. The indexes for the counts of cases and women-years by i= 1, 2, […] 
AP=13*9=117 according to age, period, and cohort of observed data are presented  
in Table 1. 

Table1. Indexing of cases and person-years according to age and period  

for observed data with A=13, P=9, and C=21  

Indexing for the age groups in years 
Period  

20-24 (a = 1) 25-29 (a = 2) 30-34 (a = 3) […] 75-79(a = 12) 80-84 (a = 13) 

1954-1958 (p = 1) I = 1,c =13 i = 10,c =12 I = 19,c =11 […] i = 100,c =2 i = 109,c =1 

1959-1963 (p = 2) I = 2,c =14 i = 11,c =13 I = 20,c =12 […] i = 101,c =3 i = 110,c =2 

[…] […] […] […]  […] […] 

1994-1998 (p = 9) I = 9,c =21 i =18,c =20 i =27,c =19 […] i = 108,c =10 i = 117,c =9 

3 years6 years 3 years

Source period Period with <25% NOS Period with >=25% NOS or CRPNOS

5 years 

1950-1954 1955-1960 1960-1962 1963-1971 1972-1974

8 years
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Bayesian age-period-cohort models 

Bayesian framework is based on conditional distributions between the likelihood data and 
prior distributions for the model parameters. Markov chain Monte Carlo methods (MCMC) 
constructs and simulates from full conditional distributions of any likelihood data and derive 
the posterior distribution from which inferences were drawn about the model parameters and 
functions of these parameters (23).  

The form of the model which belongs to the family of generalized linear models (24) is 
described as follows. The estimated mortality rates (

∧

M ap) are derived from the corrected 
number of deaths (corCVXap denoted by Dap) occurring in age group a during period p in Nap 
person-years:  

ˆ ap
ap

ap

D
M

N
=  (1) 

Rates are non-negative and naturally modeled on the log-scale as:  

 

log (
∧

M ap)=log(Dap)-log(Nap) (2) 

 

The temporal variation of mortality can be explained by variables such as age at death a, 
period at death p and epoch of birth c. The logarithmic transformation of the mortality rate 
allows the formulation of a generalized linear model (25). The corrected number of deaths 

apD for age group a in time period p can be assumed to follow a Poisson distribution with 
mean or expected value (μ) i.e., Dap ~ Poisson (μap). We then model the mean μap as:  

 

log (μap)=log(Nap)+αa+βp+γc (3) 

 

In this model, α, β and γ parameters, corresponding with the effects of age (alpha), period 
(beta) and cohort (gamma), are assigned with non-informative priors which are normally 
distributed with mean zero and precision τa, τp and τc respectively. The precision parameters 
for each of these factors, (which are the reciprocals of the respective variances [1/variance]),            
are also assigned with a vague prior following a Gamma distribution with scale and shape 
parameters equal to 0.001.  

αa ~ Normal (0, τa), βp ~ Normal (0, τp), γc ~ Normal (0, τc) 

τa ~ Γ(0.001,0.001), τp ~ Γ(0.001,0.001), τc ~ Γ(0.001,0.001) 
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We subsequently modeled: 1) the age model, where log (μa) was constant over the periods 
with one parameter for each age class; 2) a model where log (μap) varied by age with one 
common linear slope (drift). This is a sub-model for both age-period and age-cohort models. 
However, the annual constant change in rates obtained from this model can not be attributed 
to either period or cohort effect. Whatever be the cause for the regular temporal variation of 
rates, the fitted rate would be the same (25). In this paper, only age-drift from an age-period 
model is considered; 3) a model where the log-rates can vary irregularly by age and period. 
There is one parameter for each age class and one per period; 4) a model where log (μap) 
changes by age and époque of birth. There is also one parameter for each age class and 
cohort; and finally, 5) a model where log-rates change by age, period and cohort. This is 
referred to as the age-period-cohort model (equation 3). In this model, due to identifiability 
problem or linear dependency between age, period, and cohort, one parameter was fixed to 
be zero. These parameters correspond to the reference period (p0) and cohort (c0) in the 
model.  

Model selection and goodness-of-fit of the model 

In classical statistical modeling, nested sequences of models are compared using likelihood 
ratio tests, F-tests, tests of deviance for generalized models. More generally, the AIC 
(Akaike's information criterion) can be used to judge also the fit of non-nested models 
accounting for model complexity (number of degrees of freedom) (26).  

In the Bayesian framework, Spiegelhalter et al (27) has proposed a method for judging the 
goodness-of-fit, based on the Bayesian equivalent of the deviance (28):  

 

                                    D (θ)=-2log {p(y|θ)} + 2log {f(y)} (4)  

 

where f(y) depends only on the data y and not on parameter θ. The posterior mean of D(θ), 
denoted by )θD( , is a measure of model adequacy and ( )θD  is the deviance evaluated at 
the parameter posterior mean of the parameters. The difference ( ) ( )( )Dp D Dθ θ= −  can be 
thought of as a measure of model complexity. By analogy with AIC, the Deviance Information 
Criterion (DIC) is defined as:  

DIC= ( )θD + 2pD (5) 

 which is the same as:            DIC= )θD( + pD (6) 

Fitting linear models with vague priors, DIC roughly corresponds to AIC unless the prior 
strongly conflicts with the data (28). It is also valid to compare models (nested or not). Small 
DIC values are better even if they are negative. For non-hierarchical models with non-
informative priors, pD is approximately the true number of parameters. Details on the 
statistical characteristics of DIC can be found in Spiegelhalter et al (27). The fit of models can 
also be appreciated by plotting the fitted and the observed rates against period.  
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Implementation of the Bayesian models 

The models were implemented in WinBUGS, version 1.4.3 (11). Three chains were selected 
and after 30,000 iterations, the Brooks and Gelman (bgr) diagnostic plots were examined for 
the convergence of the three chains. The bgr plot is one of the diagnostic methods in 
Bayesian framework for assessing the convergence of number of chains chosen for the fitted 
model. The sampling at the chosen number of chains is converged only when the plot shows 
that the iterations have reached equilibrium or almost constant. For this paper, the bgr plot 
shows that the three chains have converged after 10,000 iterations. In order to obtain the 
DIC values, the models were set up for further 10,000 iterations. The posterior mean and the 
95% credible intervals were obtained after the last 30,000 iterations.  The obtained posterior 
mean and the 95% credible intervals are then exported to STATA 9.2 version to plot the 
graphs. The WinBUGS syntaxes used to obtain the posterior means is available in the 
appendix. 

Results  

Observed mortality rates  

Figure 2a. Age specific mortality rates and age standardized mortality rates  

(ASMR, solid black line) for corrected cervical cancer by period 

Figure 2b. Age specific rates by birth cohort; Belgium (1954-1997) 
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Age groups 25-29, 35-39, (...), 75-79 are omitted for reasons of visual clarity. Periods are indicated by the first year 
of the period, birth cohorts are indicated by the central year of the respective cohort. 
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The graphs of the observed world-age-standardized (ASMR) and age-specific mortality rates 
of corrected cervical cancer are plotted as a function of period and birth cohort in Figure 2. 
The ASMR declines almost linearly from 9.2 per 100,000 women-years in the period 1954-
1959 to 2.5 per 100,000 women-years in the period 1994-1998.  The mortality rates increase 
with age.  There is a decline over time in all age specific rates.  In the age group 80-84 years, 
the mortality rate decreases substantially until period 1969-1973 with little increase in period 
1974-1978 and then further decreasing. In the trend for age groups 70-74, 60-64, and 50-54 
years, the mortality rate increases from period 1954-1958 to 1959-1963 and then gradually 
decrease until period 1994-1998. For age groups less than 30 years old, the mortality rate 
remained rather stable. There was a large decrease in mortality rate by cohort up to 1929-
1938 (C1934) with discrete interruptions in the declining trend for cohorts 1884-1893 (C1889) 
and 1909-1918 (C1914).  However, for younger cohorts, born after 1929-1938 (C1934), a 
horizontal and sometimes even an increasing trend could be discerned.  

Model selection and goodness-of-fit of the model 

The DIC with their corresponding pD values of the different fitted models are presented in 
Table 2. 

Table 2. Goodness-of-fit parameters for age, age-drift, age-period and age-period-cohort models 

Model D  D̂  pD  DIC 

Age 4257.74 4244.75 12.99 4270.73 

Age-drift 1154.03 1140.02 14.01 1168.03 

Age-Period 1126.62 1105.54 21.08 1147.70 

Age-Cohort 898.55 866.47 32.08 930.62 

Age-Period-Cohort 873.03 836.22 36.31 909.84 

D  = posterior mean of -2logL; D̂  = -2LogL at posterior mean of stochastic nodes 

pD  = difference between D  and D̂  or approximate number of parameters 

 
The most complex APC model (pD = 36.81) showed the lowest DIC value (909.84) and was 
therefore chosen as the best fitted model. To assess the goodness-of-fit of the models 
graphically, the fitted and observed age specific mortality rates for each of the models are 
plotted against period or cohort (Figure 3). By visual inspection, it is obvious that the fitted 
rates approximate more and more the observed rates, when going from Figure 3a (horizontal 
straight lines, corresponding to the age-model) to Figure 3e (irregular curves, corresponding 
to the full age-period-cohort model).  
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Figure 3. Fitted (curves) and observed (points) age specific mortality rates  

from Bayesian age, age-drift, age-period, age-cohort and models 
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The effects of age, period and cohort together with their corresponding 95% credible 
intervals, estimated from the full APC model are presented in Table 3. The age effects 
correspond with the fitted mortality rate per 100,000 women-years considered over the whole 
period 1954-1997. The period and cohort effects can be interpreted as log rate-ratio relative 
to period 1954-1958 and the log rate-ratio relative to cohort 1919-1928. For example, the 
fitted mortality rate for women aged 40-44 years who died during the period 1974-1978 were 
born during the years 1929-1938 (C1934) can be obtained by taking the antilogarithm of the 
addition of age, period, and cohort effects estimates. That is a p ceα β γ+ +

= 4.96 per 100,000 
women-years with credible interval (4.44, 5.53). This can be observed in Figure 1. The age 
effects increase with age. The period effects declined quite regularly over the studied period, 
whereas the cohort effects varied irregularly over the different generations (Figure 3 and 4).  

80-84 70-74
60-64 50-54
40-44 30-34
20-24
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Figure 4. Age effects (rate per 100,000 women-year), Period and Cohort effects (rate-ratio)  

estimates from full Bayesian APC 
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The blue line connects the estimates and the red dash lines represent the 95% credible intervals. Note how the 
credible intervals on the rate-ratio reveal the reference period and cohort. 

Table 3. The effects of age, period and cohort on cervical cancer mortality (adjusted  

for non-specified uterine cancers) estimated from a full Bayesian APC model 

Age effect ( )ˆaα  Estimates 95% Confidence Interval 

20-24 0.13 0.06, 0.23 
25-29 1.03 0.81, 1.30 
30-34 3.43 2.98, 3.95 
35-39 7.79 7.05, 8.61 
40-44 14.32 13.13, 15.64 
45-49 21.48 19.69, 23.43 

50-54 26.76 24.26, 29.43 
55-59 28.93 25.87, 32.20 
60-64 32.88 28.90, 37.15 
65-69 36.01 31.09, 41.30 
70-74 40.89 34.71, 47.70 
75-79 49.55 41.18, 58.67 

80-84 58.73 47.80, 70.80 
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Period effect ( )ˆ
pβ   

1954-1958 1.00 1.00, 1.00 

1959-1963 0.97 0.92, 1.03 
1964-1968 0.74 0.70, 0.79 
1969-1973 0.67 0.62, 0.73 
1974-1978 0.56 0.51, 0.61 
1979-1983 0.47 0.43, 0.53 

1984-1988 0.43 0.38, 0.49 
1989-1993 0.37 0.32, 0.43 
1994-1998 0.32 0.27, 0.38 

Cohort effect ( )ˆcγ  

1869-1878 1.04 0.84, 1.31 

1874-1883 1.00 0.84, 1.21 
1879-1888 0.89 0.76, 1.06 
1884-1893 0.91 0.79, 1.05 
1889-1898 0.97 0.86, 1.10 
1894-1903 0.99 0.89, 1.10 

1899-1908 1.01 0.92, 1.10 
1904-1913 0.98 0.90, 1.06 
1909-1918 1.03 0.96, 1.11 
1914-1923 1.05 0.98, 1.12 
1919-1928 1.00 1.00, 1.00 
1924-1933 0.76 0.69, 0.82 

1929-1938 0.62 0.56, 0.69 
1934-1943 0.64 0.56, 0.73 
1939-1948 0.81 0.70, 0.93 
1944-1953 0.82 0.69, 0.96 
1949-1958 0.91 0.74, 1.10 
1954-1963 1.08 0.85, 1.34 

1959-1968 1.01 0.75, 1.35 
1964-1973 1.11 0.77, 1.62 
1969-1978 0.98 0.64, 1.47 

Discussion 

Different authors (1,17) had addressed the methods of resolving the NOS problem in cervical 
cancer morality data. We have extended these methods by using imputation to correct for the 
periods where the proportion of NOS is >25% and where CRPNOS or CRPNOSOTH ICD 
coding have been used in the template country (Netherlands) to obtain our new corrected 
cervical cancer (corCVX) mortality data in Belgium. With the corCVX data, we have applied a 
simple Bayesian age-period-cohort model to describe the trend of the corrected rate of 
cervical cancer mortality in Belgium between 1954 and 1997. Due to many zero counts for 
the mortality at younger age groups 0-4, 5-9, 10-14 and 15-19 years old and lack of reliable 
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death cause certification in older age groups 85+ years old, we have restricted our analysis 
to women between age groups 20-24, 25-29, 30-34, …, 80-84 years old.   

Observed data show that the mortality increases with age and decline over time. The ASMR 
decreased regularly from 9.2 per 100,000 women-years in the period 1954-1959 to 2.5 per 
100,000 women-years in period 1994-1998. Plotting the trends by époque of birth imported 
irregular changes in successive generations.  

Our Bayesian APC model provides a good fit to the corrected mortality rates compared to the 
other models. At the same time, the separate effects associated with age, period, and cohort 
were estimated. The fitted rates from age effects show that the mortality rates increases as 
age increases with wider credible interval width at older age groups. The wideness of the 
intervals is due to the small population size of women in the older age groups. In addition, it 
encompasses the heterogeneity in the data where there are sparse, zero counts and 
uncertainty associated with the fitted model. For the period effects, there is gradual decrease 
in the rate-ratio over the periods. The precision of the cohort effects was lowest (widest 
credibility intervals) near the ends. In particular, the youngest cohort trends are unstable due 
the low number of deaths. There is a gradual decrease, almost 50% in the cervical cancer 
mortality in Belgium over four decades. The decreasing period effect probably is best 
explained by down-staging that is the result of improved access to general gynecological 
care.  The impact of more efficacious oncological treatment schemes probably was limited 
given the small changes in stage-specific survival observed elsewhere (29). In addition, the 
APC-model reveals strong cohort effects, indicating complex phenomena, such as changed 
exposure to risk factors over time, which are partially influenced by screening which is not 
uniform by age groups (30).   

Further research is still going on where the Bayesian APC models will be extended with 
models such as generalized additive models (GAM), which smoothes the age, period and 
cohort effects and which are particularly useful in prediction of future trends.  

The purpose of this paper was didactic.  We wanted to familiarize the reader with Bayesian 
methods, which still is uncommon for the average epidemiologist or public health specialist.  
The results from the Bayesian analysis confirm conclusions from our previous work, which 
had shown that cervical cancer mortality trends cannot be described adequately from a 
simple age-period models. Cohort effects are very strong and screening probably has 
influenced these cohort factors by avoiding the impact of increased exposure to risk factors.   

A strong argument for this statement can be derived from trend analyses in East-European 
countries where similar cohort effects, not or slightly affected by screening, have resulted in a 
continued or even increased burden of cervical cancer incidence and mortality (31). 
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Appendix 
Sample syntax for the Bayesian age-period-cohort model fitted 
 
model 
{ 
###Loop over all observations### 
for(i in 1:I){ 
 
###Define age-period-cohort model### 
 corcvx[i] ~ dpois(mu[i]) 
 log(mu[i]) <- log(pyr[i]) + alpha[age[i]] + beta[period[i]] + gamma[cohort[i]] 
 
###Calculate fitted rate per 100000###    
 rate[i] <-100000*exp(alpha[age[i]] + beta[period[i]] + gamma[cohort[i]]) 
} 
###Non-informative prior model for age effects### 
for (j in 1 : A){ 
 alpha[j] ~ dnorm(0, taua) 
} 
###Non-informative prior model for period effects###  
beta[1]<-0                              #constraint to zero as reference period 
for (k in 1:P){ 
 beta[k] ~ dnorm(0, taup) 
 } 
###Non-informative prior model for cohort effects### 
gamma[11]<-0                         #constraint to zero as reference cohort 
for (c in 1:C){ 
 gamma[c] ~ dnorm(0, tauc) 
 } 
###Precisions for age, period and cohort effects### 
 taua ~ dgamma(1.0E-3,1.0E-3) 
 taup ~ dgamma(1.0E-3,1.0E-3) 
 tauc ~ dgamma(1.0E-3,1.0E-3) 
   }  
 
#Data  
list(pyr=c(…), corcvx=c(…), period=c(…), cohort=c(…), age=c(…), A = 13,  I = 117, P=9, C=21)  
 
##Initial values for three chains 
list(alpha=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5, 0.5,0.5,0.5),  
beta=c(NA,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05), 
gamma=c(0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,NA,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.0
1),taua=1.2, taup=0.7, tauc=0.9) 
 
list(alpha=c(0,0,0,0,0,0,0,0,0,0, 0,0,0), beta=c(NA,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01), 
gamma=c(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,NA,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1), taua=2.0, taup=1.0, 
tauc=0.5) 
 
list(alpha=c(0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05, 0.05,0.05,0.05), beta=c(NA,0,0,0,0,0,0,0,0),  
taua=1.0, taup=0.5,tauc=1.5, 
gamma=c(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,NA,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)) 
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