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Abstract

Background: Survival analysis is the most appropriate method of analysis for time-to-event data. The classical
accelerated failure-time model is a more powerful and interpretable model than the Cox proportional hazards model,
provided that model imposed distribution and homoscedasticity assumptions satisfied. However, most of the real data
are heteroscedastic which violates the fundamental assumption and consequently, the statistical inference could be
erroneous in accelerated failure-time modeling. The weighted least-squares estimation for the accelerated failure-time
model is an efficient semi-parametric approach for time-to-event data without the homoscedasticity assumption, which
is developed recently and not often utilized for real data analysis. Thus, this study was conducted to ascertain the better
performance of the weighted least-squares estimation method over the classical methods.

Methods: We analyzed a REAL dataset on Antiretroviral Therapy patients we recently collected. We compared the
results from classical methods of estimation for the accelerated failure-time model with the results revealed from the
weighted least-squares estimation.

Results: We found that the data are heteroscedastic and indicated that the weighted least-square method should be
used to analyze this data. The weighted least-squares estimation revealed more accurate, and efficient estimates of
covariates effect since its confidence intervals were shorter and it identified more significant covariates. Accordingly, the
survival of HIV positives was found to be significantly linked with age, weight, functional status, CD4 (Cluster of
Differentiation agent 4 glycoproteins), and clinical stages.

Conclusions: The weighted least-squares estimation performed the best in providing more significant effects and precise
estimates than the classical accelerated failure-time methods of estimation if data are heteroscedastic. Thus, we
recommend future researchers should utilize weighted least-squares estimation rather than the classical methods when
the homoscedasticity assumption is violated.

Keywords: Survival data analysis, Accelerated failure-time, Cox proportional-hazards regression, Weighted least-
squares estimation, Heteroscedasticity

Background because of its reduced set of assumptions about the
Although the Cox proportional-hazards (PH) model [1]  baseline hazard function, formulation of the accelerated
is the most employed technique in survival analysis failure-time (AFT) model [2] allows the derivation of a
time ratio, which is more interpretable than a ratio of
two hazards [3]. The AFT model doesn’t require PH as-
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range of survival time distributions and yields more
powerful estimates than the Cox PH model, provided
that method imposed assumptions satisfied [4]. Thus,
the AFT model is more appealing in many ways [5].

Conventionally, the rank [6-13] and least-squares
[14-17] are most often used methods of inference for
the AFT model [18]. The classical AFT models in gen-
eral are unified by the adoption of a log-linear represen-
tation with a particular survival time distribution for the
error term [4]. These classical methods impose constant
variance (homoscedasticity) assumption and hence, don’t
take heteroscedastic data into consideration. Conse-
quently, rank or least-squares estimation (LSE) based in-
ference for heteroscedastic data is not reliable [5, 18].
The coverage probabilities of the 95% confidence inter-
vals (CI) of the estimated coefficients are considerably
lower than the nominal level 0.95 because the variance
estimates of the parameter estimators are mostly under-
estimated with the homogeneous assumption of vari-
ance. Besides, it results in the loss of efficiency for coeffi-
cient estimators. Moreover, the intercept estimation is
inconsistent.

To incapacitate these negative aspects, Yu, et al. [18]
proposed the weighted least-squares estimation (WLSE)
for the AFT model. It is a semi-parametric approach to
handle both homoscedastic and heteroscedastic data be-
yond the incorporation of censoring, which was shown
to be more efficient theoretically as well as extensive
Monte-Carlo simulation studies. Specifically, Yu, et al.
[18] showed that the WLSE was more efficient than the
classical AFT method with higher statistical power to
detect the associated statistical significance with lower
standard errors of estimates and narrower confidence in-
tervals due to lower variances obtained from synthetic
observations combined with the actual observations.

Therefore, this article is aimed to promote the
utilization of this WLSE model in analyzing our HIV
data to detect significant effects of covariates on HIV pa-
tients’ survival for a more valid inference and conclu-
sions. In doing so, we compared the classical AFT
method with WLSE to ascertain the validity, detective
ability, and efficiency of inference from WLSE based on
real Antiretroviral Therapy (ART) dataset with more co-
variates. The magnitude of standard errors of estimates,
the width of confidence intervals, and the number of sig-
nificant covariates was considered as comparison criteria
due to the WLSE has been shown to be efficient and can
recover the true effect of the parameters and their
variances.

Data and research method

Description of the dataset

The data was obtained from University of Gondar refer-
ral hospital ART database. Patients whose ART starting
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date unrecorded were excluded. On the other hand, a
total of 3042 patients with complete records of their
baseline characteristics were targeted for the study. We
used systematic random sampling since a complete list
was available. To determine the sample size, we used
Z§ ps(1-11) /E*
1+Z<2>.025”1(\y1’”)/£2
number of patients required for the study; Z s is the
upper 25 percentile point of the standard normal dis-
tribution and it is 1.96; m is the proportion of death in
the study population which was 0.17; E =0.05 was mar-
gin of error; and N was the total number of patients with
complete records of baseline characteristics. Accord-
ingly, a sample of 203 HIV patients who started ART be-
tween 2003 and 2009 were followed until April 2015.

The response variable was considered to be the length
of time measured in months from ART initiation until
time of death (censor).

Cochran’s [19] formula n = where:- 7 is the

Covariates of the study

There were six covariates recorded at the beginning of
ART, namely “gender” with two levels (male and female);
“functional status” with three levels (working, ambula-
tory, and bedridden); WHO “Clinical Stage” with four
levels (I, II, 111, and IV); Cluster of Differentiation Agent
4 (CD4) percent with two levels (12—-15%, and 16—28%),
age and weight. We used CD4 percent instead of CD4
count because it was recorded in the database. It was re-
corded in the form of class intervals for some of the pa-
tients and in the form of actual values for the others.
Thus, we used the Struges [20] rule to determine the ap-
propriate number of class groupings. However, we
merged all percent categories greater than or equal to
16% since the percentages of death in those categories
were very small. Similarly, we merged the first three cat-
egories of the WHO clinical stage.

Statistical methods

The log-rank test

We used the log-rank test to determine which covariates

to select for further analysis. The log-rank test, devel-

oped by Mantel and Haenszel [21], is a non-parametric

test for equality of survival functions in two or more

groups. Let t; be times where events are observed (as-

sume these are ordered and there are D such times); d;;

be the number of observed events from group k at time

t; Yi be the number of subjects in group k that are at
n n

risk at time t;, d; = Y d;, Y; = > Yy, and n is the num-
j=1 j=1

ber of comparison groups. Then to test the hypothesis, a

D

vector Z is computed, where the k” element is Z; = > (
i-1

di—Y i %) The test statistic Q — 757z where ¥ is
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variance covariance matrix obtained from the data fol-
lows chi-square distribution with n degrees of freedom.
Larger value of the test statistic or the corresponding
smaller P-value provides strong evidence against the null
hypothesis of no difference.

Assessment plots

We used plots to assess the time-varying nature of co-
variates; heteroscedasticity in the data; and the linearity
assumption of covariates. Plots of coefficients of covari-
ates over time help examine the time-varying nature of
covariates [4]. Reference lines at zero falling within the
95% confidence limits provide evidence that covariates
are not time-varying. Plot of the estimated variances ver-
sus the means can be used to assess heteroscedasticity in
the data [18]. Any pattern suggests the presence of het-
eroscedasticity. Plot of the log-survival time against a co-
variate can be used to assess the linearity assumption
and a straight Locally Weighted Scatterplot Smoothing
(LOWESS) line close to a horizontal reference line
shows no violation to the linearity assumption [4].

The classical AFT model
The AFT model regresses survival time 7 on covariates
X as follows,
T;= log(T)) =ao+BiXi+e, i=1,2,..,nEq L.
Where a, is the true intercept; By is the true p-
dimensional vector of slope parameters; the index “”
corresponds to the study participant in the analysis and

n is the total number of patients. Let X = [1 X] and BOT

— [ao BL] where fB, is the vector of coefficients for the
AFT model [18].

In this model, let €;=ce;. Then, e; is the error term
which is independently and identically distributed (IID)
with unspecified distribution function F of mean 0 and
variance 1. In other words, €; is an IID error term with a
constant variance ¢® (homoscedasticity) assumption and
a particular survival time distribution [5]. The most
commonly used survival distributions for AFT metrics
are exponential (Exp), Weibull (Weib), log-logistic
(Logl), lognormal (LN), and generalized gamma (GQG)
[3]. The exponential distribution is the special case of
the Weibull distribution. Similarly, the generalized
gamma distribution includes a wide range of family dis-
tribution as its special case. Its flexible hazard function
allows for many possible shapes such as Weibull, expo-
nential, and lognormal distributions with various values
of the shape and the scale parameters [4]. Therefore, we
used the GG AFT model for evaluating and selecting an
appropriate model from its parametrically nested pos-
sible AFT models for the dataset by testing the shape
and the scale parameters.

Page 3 of 7

Moreover, we used information criterion statistics
(ICS), -2loglikelihood (-2LL) for comparison of the
performance of parametrically nested classical AFT
models and Akaike information criterion (AIC) for com-
parison the performance of other alternative classical
AFT models. Accordingly, the best model was the one
with the smallest ICS indicating the minimum loss of
information.

Finally, the performance of the best-fitted classical
AFT model was compared with the model fitted by the
WLSE. This comparison was based on either the magni-
tude of standard errors (SE) of estimates or the length of
confidence intervals to determine the accuracy and effi-
ciency of a given inference. The ability to detect more
significant  covariates was another interest of
comparison.

The weighted least-squares method

The WLSE method frees the homoscedasticity assump-
tion in Eq. 1, which is the most practical method for real
data analysis.

Define Z =min {T, C} and § =I(T < C), where C is the
logarithm of the censoring time, T is as defined in Eq. 1,
I(-) is the indicator function. Then, the triplet denoted
by {Z;, X;, §;} represents values of a transformation of ob-
served survival time (Z;), covariates (X;), and censoring
indicator function (8,) for the i patient where C; is as-
sumed to be independent of 7; and X;. The synthetic ob-
servation is defined to be
T;k = Z;0; +E<T,|Tl > Cl)<1—6,) i=1,2,....,n, where,
E(.) is the expectation function. The WLSE utilizes a
weighted least-squares equation as in Yu, et al. [18] with
synthetic observations weighted by the square root of
their variances where the variances are estimated via the
local polynomial regression. Thus, the weighted regres-
sion according to Yu, et al. [18] is as follows.

T?new = XoXionew +/3)gXinew + €;, i= 1, 2, ey 11 Eq 2.

Where T3}, =T /onee(y;) ;5 onpe(@s) is the non-
parametric estimator (NPE) via the local polynomial re-
gression of o"(y;), the square root of the variance of T7;
Xionew = ]-/O-NPE(/’li); Xinew :Xi/UNPE(Mi); e»1, and n are as
defined in Eq. 1.

Based on the weighted least-squares regression in Eq.

2, all /3’0, including ay, are slope parameters.

Results

Covariates with a probability of being significantly less
than or equal to 10% in the log-rank test were poten-
tially considered for further analysis besides age and
weight. The P-value for gender is greater than 0.1(10%
probability of inclusion) (Table 1). Thus, it was not fur-
ther included in the models. Since age and weight were
numeric, we tested them one at time (independently)
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Table 1 Patients Characteristics
Covariates Labels Number Number LRT
g;tients gfeaths P-Value
Gender Female 118 21 1.000
Male 85 14 1.000
FS Working 136 15 0.002
Ambulatory 55 14 0.002
Bedridden 12 6 0.002
CS 1, &I 154 13 0.000
v 49 22 0.000
CD4% 12-15% 162 33 0.100
16-28% 41 2 0.100

FS: Functional Status; CS: Clinical Stage; CD4%: Cluster of Differentiation Agent
Four in Percent; LRT: Log-Rank Test.

using all survival models considered in this study and we
found them significant at 5% level of significance for fur-
ther analysis. The averages of age and weight for the
study patients were 31 years old and 45 Kg respectively.

We proceeded further with an assessment of the time-
varying nature of covariates in Fig. 1. We used the Cox
PH model for this test. We found that the reference line
on zero differences falls within the 95% confidence inter-
vals for age, weight, and CD4%, which confirms that
these covariates are not time-varying.

We also examined the plot of the estimated variances
versus the means from the weight least-squares method,
as shown in Fig. 2. The data was found to be
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heteroscedastic, which violates the assumption of the
classical AFT models.

We further examined the linearity assumption using
locally weighted scatter plot smoothing (LOWESS). As
seen in Fig. 3, there were no violations to the covariates
“age” and “weight”. Thus, we used the values of age and
weight as they were rather than their transformed form.
Furthermore, there was no significant interaction effect
to be included in the models.

According to Yu, et al .[18], the WLSE is a valid infer-
ence in such cases. We summarized the results in
Table 2. The reference categories are working for func-
tional status; I, II, & III for clinical-stage; and 12-15%
for CD4%. The level of significance is considered to be
5%.

In addition to the WLSE, we revealed the results from
the classical methods namely, parametric AFT model,
rank, and least-squares estimation (LSE) to ascertain the
superiority of WLSE over the classical methods. We se-
lected the appropriate parametric AFT model for the
dataset among the exponential, Weibull, log-logistic, log-
normal, and generalized gamma AFT models.

The shape parameter (Q) from the classical GG AFT
model in Table 3, is not significantly different from 0 or 1.
This indicates that the LN and the Weibull AFT models are
likely to be appropriate among the special cases of GG AFT
model. However, Q is estimated to be 0411 and it is nearer
to 0 than to 1. For this conclusion, we selected the LN AFT
model over the Weibull. Moreover, we considered ICS in
Table 4 for selecting the most appropriate model.

Fig. 1 Plots of Coefficients over Time
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Fig. 2 Variance function estimated from the weighted least-squares
method. The dots are the observed variances and the triangles are
the estimated variances

The smaller magnitude of the information criterion
statistics (ICS) for LN AFT model led us to the conclu-
sion that the LN AFT model is the best fit for the data.
Therefore, we used the LN AFT model to represent the
parametric AFT models for comparison. Furthermore,
the estimation performance of the other parametric AFT
models was the same as LN AFT model as in Table 5.

As seen in Table 5, the performance of the three clas-
sical methods was similar in this particular study. Ac-
cordingly, age, weight, and WHO clinical stage were
significant based on these methods. However, an effi-
cient method is obviously more likely to identify signifi-
cant covariates. Thus, we found the LSE to be the most
efficient among the classical methods in Table 5 since
the standard errors (SE) associated with its estimates are
relatively small. Similarly, LN AFT model was more effi-
cient as compared to the rank method. The Cox PH
model identified the same significant covariates as the
classical AFT models. However, directions of the effects
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Fig. 3 Linearity Assumptions for Age and Weight

Page 5 of 7

Table 2 Weighted Least-squares Estimation
Covariates Estimates SE 95% Cl

LCL ucL
Constant 4773 0.026020 4.722 4.824
Age -0.00516 0.000010 -0.00518 —0.00514
Weight 0.00497 0.000005 0.00495 0.00498
BFS —0.04742 0.013663 -0.07420 —-0.02064
AFS —0.02048 0.003439 -0.02721 -0.01374
CS (V) —0.25080 0.002214 —-0.25513 —0.24646
CD4%(16-28) 0.10320 0.046816 0.01143 0.19496

Estimates: Coefficients Correspond to the log Median Survival Time; Estimate for
Age corresponds to a year increase in Age; Estimate for Weight corresponds to a
Kilogram increase in Weight; Cl: Confidence Interval: LCL: Lower Confidence Limit;
UCL: Upper Confidence Limit; BFS: Bedridden Functional Status and its reference
category is Working Functional Status; AFS: Ambulatory Functional Status and its
reference category is Working Functional Status; CS (IV): Clinical Stage IV and its
reference category is Clinical Stage I-lll: CD4%16-28: Cluster of Differentiation
Agent Four Percent 16-28 and its reference category is Cluster of Differentiation
Agent Four Percent 12-15.

differed in the Cox PH model since estimates were af-
fected by the time-varying nature of clinical stage.

Nevertheless, we compared the performance of LSE
with the WLSE since the LSE was the best among the
classical methods. The results in Table 2 revealed that
the WLSE is more accurate than the LSE. It resulted in
efficient estimates of covariates effect on HIV patients’
survival since the narrow CI indicates a relatively small
standard error of estimates as theoretically showed in
Yu, et al. [18]. It also identified more significant covari-
ates since functional status and CD4 percent were add-
itional significant covariates that were not identified by
LSE. Though we considered the same set of covariates in
all models at the beginning, we included only significant
covariates in the final models as per their ability to iden-
tify significant effects. We interpreted the results of
WLSE as follows.

Holding the effects of all other factors constant, the
log survival time for a patient with an additional year of
age decreases by 0.00516. In other words, the median
survival time of a patient is ¢>%%°'® = 1,01 times as com-
pared to that of a patient with a single year older. This
indicates that the survival probability of younger patients
is better than older. Studies by [22-24] confirmed that
the hazard of death increases with higher age intervals.
These studies also confirmed that less weight, low
level of CD4, higher clinical stage, and non-working
functional status are associated with increased hazard
rate. Similarly, we found that the logarithm of survival
is 0.00497 more for a kilogram of additional weight.
For patients with bedridden and ambulatory func-
tional status, it is respectively 0.047 and 0.0205 less
as compared to those with working functional status.
Moreover, it is 0.251 less for patients at clinical stage
IV than patients at lower stages and it is 0.1032 more
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Table 3 Estimates of Shape Parameter (Q) from the Generalized
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Table 5 Estimates from the Classical AFT and the Cox PH

Gamma AFT Model Models
Estimates 95%Cl Method  Covariates  Estimates  SE 95%Cl
LL uL [T
0411 -0.507 1.328 LN AFT meanlog 4.832 0.1564 4526 5.139
Cl: Confidence Interval; LL: Lower Limit; UL: Upper Limit. sdlog 0.232 0.0286 0.182 0.295
for patients with CD4 percent of 16-28% as com- Age ~0009 00029 ~0015  ~0003
pared to those with lower CD4 percent. In our study, Weight 0008 00032 0002 0014
gender of patients was not significantly associated S —0278 00599  -039  -0160
with their survival at 5% level significant. In contrast, = Rank Age -0.009 00033  -0015  —0002
it was found to be significant according to the three Weight 0,008 00033 0001 0014
studies we mentioned in this discussion. Note that, s (V) —0277 00572  —0389  —0165
interpretations in terms of median time ratio can be
. . . LSE Age —-0.009 0.0027 -0.014 —-0.004
obtained by exponentiation of the corresponding coef-
ficient estimates as it is indicated for age. Weight 0008 00026 0003 0013
CS (V) -0272 0.0530 -0376 -0.168
Discussions Cox PH Age 0.054 00177 0019 0.089
With many available statistical software packages, such Weight 0047 00228  —0092  — 0002
as ‘survival’ and ‘flexsurv’ in R, STATA, SAS, Python, s (V) 1917 03684 14195 2639

etc., AFT models have become popular in survival data
analysis with a wide range of clinical and epidemiological
applications. Among others, AFT models have been uti-
lized in acute liver, cancer, and HIV AIDS studies [3,
22-25]. However, the validity of an inference depends
on the realization of model assumptions. One of the as-
sumptions in AFT models is constant variance assump-
tion. According to Yu, et al .[18], a valid inference can
be obtained from the WLSE than the classical AFT
methods when the constant variance assumption is vio-
lated. Moreover, the WLSE for the AFT model is con-
structed operationally by the synthetic observations
based on the transformation that allows the same condi-
tional expectations as the logarithm of survival time [26]
so that the transformation has no effect on the manner
of interpretation for AFT model. Therefore, the degree
of precision obtained from WLSE is superior to the clas-
sical methods without any difficulties imposed on the in-
terpretation of effects. However, we relied on evidence
from previous studies about the efficiency of the WLSE
and utilized only magnitudes of standard errors, the
width of confidence intervals, and the number of identi-
fied significant covariates as criteria of comparison.
Thus, future researchers can consider more criteria than
we used for comparison of the efficiency of WLSE with
that of classical AFT methods.

Table 4 Information Criterion Statistics for Classical AFT Models

ICS Exp Weib Logl LN GG
-2LL 479.7 380.6 3799 3798 3792
AlC 485.7 390.6 3899 389.8 3912

ICS: Information Criteria Statistics; Exp: Exponential; Weib: Weibull; Logl: Log-
logistic; LN: Log-Normal; GG: Generalized Gamma; LL: Log-likelihood; AIC: Akaike
Information Criterion.

Estimates: Coefficients Correspond to the log Median Survival Time for the First
Three and log Hazard for the Cox PH; Estimate for Age corresponds to a year
increase in Age; Estimate for Weight corresponds to a Kilogram increase in
Weight; SE: Standard Error; Cl: Confidence Interval; LCL: Lower Confidence Limit;
UCL: Upper Confidence Limit; LN AFT: Log-Normal Accelerated Failure-Time; CS:
Clinical Stage; LSE: Least Square Estimation; PH: Proportional-Hazards; meanlog:
Mean of Log Survival Time; sdlog: Standard Deviation of Log Survival Time.

Conclusions and recommendations

We utilized AFT models based on the classical and
WLSE methods on a real ART dataset we recently com-
piled with more covariates than considered in [18].
Among possible parametric AFT models, the lognormal
AFT model fitted the data well. We compared the re-
sults from this model with the results from LSE and
rank methods. From the classical methods, LSE was
found to be the best; LN AFT the second; and rank the
least. Consequently, we compared LSE with WLSE since
WLSE was proved in Yu et al. [18] to be an efficient esti-
mation. The width of confidence intervals from the
WLSE was found to be shorter than that of the classical
methods. The WLSE also detected more significant co-
variates. As a result, the WLSE performed best in pro-
viding more significant effects and precise estimates.
However, the data was heteroscedastic. Thus, we recom-
mend future researchers extend the application of WLSE
to a homoscedastic real dataset with more covariates to
ascertain its validity. They should utilize WLSE rather
than the classical AFT methods when the homoscedas-
ticity assumption is violated to obtain efficient estimates.
Moreover, health workers should be more cautious when
a patient is in advanced clinical stages, old in age, rela-
tively lower in weight, in bedridden or ambulatory func-
tional status, or with lower CD4 percent during ART
initiation.
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