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Abstract 

Background About 80% of the roughly 7,000 known rare diseases are single gene disorders, about 85% of which are 
ultra-rare, affecting less than one in one million individuals. NGS technologies, in particular whole genome sequenc-
ing (WGS) in paediatric patients suffering from severe disorders of likely genetic origin improve the diagnostic yield 
allowing targeted, effective care and management. The aim of this study is to perform a systematic review and meta-
analysis to assess the effectiveness of WGS, with respect to whole exome sequencing (WES) and/or usual care, for the 
diagnosis of suspected genetic disorders among the paediatric population.

Methods A systematic review of the literature was conducted querying relevant electronic databases, including 
MEDLINE, EMBASE, ISI Web of Science, and Scopus from January 2010 to June 2022. A random-effect meta-analysis 
was run to inspect the diagnostic yield of different techniques. A network meta-analysis was also performed to 
directly assess the comparison between WGS and WES.

Results Of the 4,927 initially retrieved articles, thirty-nine met the inclusion criteria. Overall results highlighted a sig-
nificantly higher pooled diagnostic yield for WGS, 38.6% (95% CI: [32.6 – 45.0]), in respect to WES, 37.8% (95% CI: [32.9 
– 42.9]) and usual care, 7.8% (95% CI: [4.4 – 13.2]). The meta-regression output suggested a higher diagnostic yield of 
the WGS compared to WES after controlling for the type of disease (monogenic vs non-monogenic), with a tendency 
to better diagnostic performances for Mendelian diseases. The network meta-analysis showed a higher diagnostic 
yield for WGS compared to WES (OR = 1.54, 95%CI: [1.11 – 2.12]).

Conclusions Although whole genome sequencing for the paediatric population with suspected genetic disorders 
provided an accurate and early genetic diagnosis in a high proportion of cases, further research is needed for evaluat-
ing costs, effectiveness, and cost-effectiveness of WGS and achieving an informed decision-making process.
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Introduction
Online Mendelian Inheritance in Man (OMIM), an 
updated catalogue of human genes and genetic pheno-
types, contains over 16,000 genes [1, 2], and more than 
9,300 Mendelian phenotypes, including more than 6,000 
with a known molecular defect. In addition, there are 
more than 1,500 confirmed Mendelian phenotype or a 
phenotypic locus with an unknown molecular basis and 
more than 1,700 additional phenotypes of suspected 
Mendelian origin [3]. According to Orphanet [4] there 
are roughly 7,000 rare diseases (RD), 80% of which are 
thought to have a genetic cause, the majority of which are 
Mendelian/monogenic disorders [5, 6].

Non-monogenic genetic diseases, also known as com-
plex genetic diseases, are conversely caused by a com-
bination of genetic, environmental, and lifestyle factors. 
Unlike monogenic diseases that are caused by a single 
gene mutation, non-monogenic diseases involve mul-
tiple genes, each contributing a small effect, as well as 
environmental and lifestyle factors. According to the 
European definition, rare diseases are life-threatening or 
chronically debilitating conditions with a prevalence of 
less than one case in 2,000 individuals, while the US fig-
ure is less than one case in 1,500 people [7, 8]. Although 
rare individually, these disorders affect 264–446 million 
of people worldwide, and 17.8–30.3 million in Europe 
[7, 9]. About 50 to 60% of RDs affect children, 12% of 
which are congenital and 42% have an onset in the first 
two years of life [9, 10]. Patients suffering from RD share 
similar needs, suffer diagnostic delay, uncertainty in 
genetic counselling, and lack of proper clinical manage-
ment and care, since an effective treatment is available 
only for about 400 diseases. This is also due to failure 
in the identification of the molecular defects underly-
ing a large number of these diseases. Genetic testing 
confirms or rules out a suspected genetic condition, is 
diagnostic in a proportion of clinically unsolved cases 
and determines the individual chance of developing or 
passing on a genetic disorder. Over the past decade, 
the development of next generation sequencing (NGS) 
technologies and bioinformatic pipelines to manage 
and analyse genomic data, jointly with an impressive 
reduction of sequencing costs, have led to a widespread 
implementation of genomic sequencing, most often 
whole exome sequencing (WES). These tools, which 
can identify the molecular defect causing Mendelian 
disorders [11], have shown to be effective and sustain-
able in genomic medicine. As a powerful tool, genomic 
medicine has the potential to improve outcomes and 
reduce costs in primary care settings [12]. The applica-
tion of whole genome sequencing (WGS) and the whole 
exome sequencing (WES) in new-borns and children 
suffering from a severe disorder of likely genetic origin 

is expected to improve targeted, effective care and man-
agement [13, 14].

WGS and WES are increasingly used for diagnostic 
purposes on critically ill infants and children admitted 
to Neonatal Intensive Care Units (NICU) and Paediatric 
Intensive Care Units (PICU) with a suspected genetic dis-
order [14–16]. Traditional genetic testing allows to reach 
the diagnosis in around 20% of cases [14]. Thus, acutely 
ill neonates with suspected genetic diseases are often dis-
charged or deceased before diagnosis. As a result, NICU 
treatment of genetic diseases is usually empirical, may 
lack efficacy, may be inappropriate, or even may cause 
adverse effects [17].

Currently, whole exome sequencing (WES) is more 
commonly used globally than whole genome sequenc-
ing (WGS) due to its easier data storage and processing 
[18], as well as its cost-saving benefits [19]. Neverthe-
less, despite the widespread adoption of whole exome 
sequencing (WES), previous research has demonstrated 
that whole genome sequencing (WGS) has the potential 
to yield a greater number of diagnoses than WES both in 
undiagnosed adults and suspected genetic diseases of the 
newborn. Particularly, over a large number of studies, the 
diagnostic yield attained by WES ranges between 25 and 
50% while the WGS diagnostic yield is about 40–60% [20, 
21]. Furthermore, a recent systematic review and meta-
analysis showed a greater diagnostic yield for WGS (0.41, 
95% CI 0.34–0.48, I2 = 44%) compared to WES (0.36, 
95% CI 0.33–0.40, I2 = 83%), although not statistically 
significant, and usual care (UC) (0.10, 95% CI 0.08–0.12, 
I2 = 81%) [22]. In addition, another systematic review 
reported a diagnostic yield ranging from 3 to 79% for 
WES and between 17 and 73% for WGS [23].

Recent studies have also supported the clinical utility of 
WGS, compared to standard testing, in NICU highlight-
ing a higher diagnostic yield, a sharp increase in changes 
in clinical management, and shortening of the time to 
diagnosis thanks to the PCR-free WGS approach[24]. 
Therefore, a wider use of WGS could change acute man-
agement and life outcomes in children with chronic dis-
eases using stratified therapeutics [14].

Marshall et al. [25]. In addition, the translation of WGS 
into clinical settings has been hindered by the lack of access 
to technology, complex infrastructure, and expert person-
nel. At present, in a context of limited healthcare resources, 
it is necessary to retrieve evidence on how to integrate the 
WGS technology in the diagnostics, fulfilling both the cri-
teria of clinical utility and cost-effectiveness [26].

The aim of this study was to perform a systematic 
review and meta-analysis to assess the effectiveness of 
WGS, with respect to WES and/or UC, for the diagno-
sis of suspected genetic disorders among the paediatric 
population.
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Materials and methods
Search strategy and selection criteria
A systematic review of the literature was conducted que-
rying relevant electronic databases, including MEDLINE, 
EMBASE, ISI Web of Science, and Scopus from Janu-
ary 2010 to June 2022 in order to retrieve peer-reviewed 
articles. The Population, Intervention, Comparison, Out-
come (PICO) [27] framework was adopted to formulate 
the following research question: “Is implementing WGS 
for the care of the paediatric population effective?”. A 
comprehensive search strategy was created and imple-
mented according to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) [28] 
checklist. First, controlled descriptors and the relative 
key words were identified and verified in each scientific 
database. Afterwards, a Boolean search string, combining 
Medical Subject Headings (MeSH) and free-text words, 
such as “new born”, “infant”, “paediatric”, “paediatric”, 
“child”, “next-generation sequencing”, “whole genome 
sequencing”, “whole exome sequencing”, “genomic test-
ing”, “panel test”, “diagnostic yield”, “effectiveness”, “appro-
priateness”, “efficacy”, “clinical efficacy”, “NICU”, “PICU”, 
“emergency”, was used. Full search strings for each data-
base are detailed in the Supplementary Material. The 
search was completed by hand search in order to iden-
tify missing articles (i.e., snowball searching). Additional 
relevant articles were found by analysing bibliographic 
citations. The inclusion criteria for this systematic review 
were defined as follows: paediatric patients affected by 
severe life-threatening disorders of likely genetic origin 
undergoing WGS, and/or WES diagnostic test, either in 
an emergency setting (i.e., neonatal intensive care unit 
or NICU and paediatric intensive care unit or PICU) or 
in an outpatient setting. Where available in the included 
studies, UC was also considered. UC (e.g., chromosomal 
micro-array [CMA], targeted gene panel, array CGH, flu-
orescence in-situ hybridization, karyotype) was defined 
as sequencing methods not involving massively parallel 
sequencing and not allowing to screen simultaneously 
for mutations in hundreds of loci in genetically hetero-
geneous disorders, whole-genome screening for novel 
mutations, and sequence-based detection of novel patho-
gens that cause human diseases [29]. The inclusion was 
restricted to articles written in English and published 
between January 2010 and June 2022. The indicated 
timespan reflected the new sequencing technologies not 
available in older publications or being outdated owing 
to technological developments [30]. The search strategy 
was further restricted by availability of full texts pub-
lished in peer-reviewed journals and by type of articles, 
which excluded non-primary literature, as commentary, 
books, thesis, and reviews. Assessment of the eligibility 
criteria was carried out independently by three authors; 

in the case of divergence, a fourth author was consulted. 
The primary outcome of our search was the diagnostic 
yield which was measured as the number of patients in 
which the genetic test suggested the definitive diagnosis 
out of the total number of patients undergoing the test. 
After the removal of duplicate articles, and according 
to the inclusion and exclusion criteria, three independ-
ent researchers performed the preliminary screening by 
evaluating the titles and abstracts. Then, the same sub-
jects screened the full text of each study to determine the 
potential eligibility. In both screening phases, all disa-
greements were solved by a fourth author by discussing 
the inclusion and exclusion criteria of the article.

Data analysis
Data extraction was completed by three independent 
investigators. A pre-determined data extraction spread-
sheet was designed including the following variables: 
study characteristics, country of the study, setting, sam-
ple size, age, intervention, comparator, indicators, and 
main findings. Methodological quality of studies evalu-
ating diagnostic yield was assessed using the Quality 
Assessment of Diagnostic Accuracy studies (QUADAS-2) 
scale [29] as recommended by the Agency for Healthcare 
Research and Quality (AHRQ), the Cochrane Collabora-
tion, and the National Institute for Health and Clinical 
Excellence (NICE). The use of QUADAS-2 implies four 
phases: (1) state the review question, (2) develop review 
specific guidance, (3) review the published flow diagram 
for the primary study or construction of a flow diagram if 
none is reported, and (4) judgement of bias and applica-
bility. The scale includes four domains: (1) patient selec-
tion, (2) index test, (3) reference standard, and (4) flow 
and timing. The first part of each key domain regards bias 
and includes information used to support the risk of bias 
judgment, a set of signalling questions to help reviewers 
reach the judgements regarding bias, and judgment of 
risk of bias. For each signalling question, the investiga-
tor could select “yes,” “no,” or “unclear”. The risk of bias 
was judged as “low”, “high” or “unclear”. If all signalling 
questions for each domain answered “yes”, the risk of 
bias was judged “low”, while, if any signalling question 
answered “no”, the risk of bias was considered “high”. The 
term “unclear” was used whenever the risk of bias could 
not be assessed due to missing information. The second 
part of the first three domains regarded applicability. The 
applicability sections were similar to the bias sections 
except for the signalling questions. Concerns regarding 
applicability were rated as “low”, “high” or “unclear”, the 
latter definition being used when insufficient data were 
reported. Studies rated as “low” on all domains regard-
ing bias or applicability received an overall judgment of 
“low risk of bias” or “low concern regarding applicability”. 
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Studies rated as “high” in one or more domains were 
judged “at risk of bias” or as having “concern regarding 
applicability”. QUADAS-2 assessments were summarized 
through the relative tabular and graphical displays [30].

The Grading of Recommendations, Assessment, Devel-
opment and Evaluations (GRADE) approach was adopted 
to assess the evidence quality for the outcome of inter-
est across the included studies. The GRADE method 
categorizes the level of evidence quality into: high qual-
ity, further research is extremely unlikely to change the 
credibility of the pooled results; moderate quality, further 
research is likely to influence the credibility of pooled 
results and may change the estimate; low quality, further 
research is extremely likely to influence the credibility of 
pooled results and is likely to change the estimate; very 
low quality, the pooled results have extreme uncertainty 
[31]. The online GRADE profiler (GRADEpro) [32] was 
adopted to create evidence profiles and summary of find-
ings tables. For the outcome of interest, the quality of evi-
dence was downgraded if the risk of bias, inconsistency, 
indirectness, imprecision, and publication bias were 
assessed as having serious limitations [33]. The overall 
quality was rated as either “high”, “moderate”, “low”, or 
“very low”.

Quantitative data synthesis was performed by always 
keeping the diagnostic yield, in terms of proportion 
of cases detected out of the total, as outcome of refer-
ence. Firstly, the diagnostic yield was meta-analysed, by 
inspecting differences between diverse techniques (WES, 
WGS, and UC) via subgroup analyses: to this purpose, in 
view of the expected heterogeneity among studies [34], 
random-effects models were developed according to Der-
Simonian and Laird [35] and heterogeneity was inspected 
using the  I2 statistic (threshold level for significant het-
erogeneity: ≥ 50%) and chi-squared test for homogeneity 
(significance level for heterogeneity: p < 0.1) [36]. Given 
the available number of studies, a meta-regression model 
was also built, in order to compare the techniques by 
adjusting for relevant covariates (ICU vs non-ICU set-
ting, Mendelian vs non-Mendelian disease, publication 
before vs after 2017). Another meta-regression model 
was run stratifying by the value (i.e., low and high) of the 
diagnostic yield reported by the primary studies included 
in the revision. The cut-off value was set according to the 
pooled diagnostic yield estimated through the random-
effects meta-analysis.

Secondly, a network meta-analysis was performed 
by considering all studies comparing at least two of the 
three techniques. A frequentist approach based on the 
Mantel–Haenszel method for binary data, as described 
by Efthimiou et al. [37], was adopted. Heterogeneity was 
quantified through the test of inconsistency (Cochran’s 
Q statistic), and the odds ratio was chosen as summary 

measure, as widely recommended for indirect compari-
sons of binary variables because of the symmetry and 
invariance of this measure to the coding of event and 
non-event [38–40].

All statistical analyses were carried out, and plots were 
drawn, using the statistical software R (version 4.0.5) 
[41]: specifically, the “meta” package (version 5.0.0) [42] 
was used for the meta-analysis of proportions and meta-
regression, while the “netmeta” package (version 2.0–0) 
was used for the network meta-analysis [43]. Two-sided 
p-values < 0.05 were considered statistically significant.

Role of the funding source
The funding source had no involvement in study design; 
in the collection, analysis and interpretation of data; in 
the writing of the report; and in the decision to submit 
the article for publication.

Results
The database search resulted in 4,927 publications and 
18 studies were retrieved through the snowball search 
method. After duplicates elimination, 3,955 titles and 
abstracts were screened. A total of 63 articles were iden-
tified for a full-text screening. After full-text examina-
tion, 24 papers were excluded since they did not fulfil 
the eligibility criteria. Thus, 39 [15, 16, 24, 44–79] arti-
cles were included in the systematic review and were also 
considered for the meta-analysis (Fig. 1).

The considered manuscripts were published between 
2015 and 2022, including 17 [15, 24, 44, 47, 49, 56, 58, 
61–64, 66, 67, 70, 76, 78, 79] in USA, 7 in China [45, 46, 
57, 65, 69, 74, 75], 2 in Canada [60, 80], 2 in Australia [52, 
54], 2 in the UK [51, 71], and 1 in France [50], Poland 
[16], the Netherlands [48], Germany [72], Turkey [77], 
Saudi Arabia [59], Malaysia [73], Mexico [55], and Brazil 
[68]. Twenty-two papers were retrospective cohort stud-
ies [15, 24, 45, 47, 49–51, 55, 56, 63, 64, 66–68, 70, 71, 
73, 75, 77–79], fourteen were prospective cohort studies 
[16, 44, 46, 48, 52–54, 57, 59, 60, 65, 72, 74], and three 
were randomized controlled trials (RCT) [58, 61, 76]. The 
mean age of enrolled children varied from 2 days to less 
than 18 years.

All the included articles estimated the diagnostic yield, 
12 [15, 24, 47, 49, 52, 54, 55, 57, 67, 69, 75, 76] consid-
ered also the change in clinical management, four stud-
ies estimated the healthcare resource utilization [48, 49, 
63, 79], and only one study [47] also assessed the 120-day 
mortality. Table S1, in the supplementary file, provides 
a summary of the main characteristics of each of the 39 
publications.

The overall methodological quality within individual 
studies is summarized in Table S2 of supplementary file 
and Fig.  2. Almost half of the studies were deemed at 
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low risk for bias in all the domains [16, 44, 46–48, 50, 
52–55, 58, 60, 62, 65, 69, 72, 76, 77]. As for the third 
domain, reference standard, one studies [78] resulted 
in high risk of bias because information about blind 
assessment were not reported. In the fourth domain, 

flow and timing, three studies [59, 63, 68] had high risk 
of bias, as not all patients received the same reference 
standard and were not included in the final analysis.

Nine studies [24, 56, 64, 66–68, 70, 71, 73] got a high 
risk of bias in the applicability section, particularly in the 

Fig. 1 PRISMA flow diagram related to the included studies in the meta- analysis

Fig. 2 Stacked bar charts of Quality Assessment of Diagnostic Accuracy Studies -2 (QUADAS-2) scores showing an overview of the methodological 
quality of included studies, expressed as a percentage of studies that met each criterion
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patient selection, as there may be issues related to the 
enrolment of patients. Eleven studies [49, 51, 56, 57, 61, 
64, 66, 67, 74, 75, 79] got an unclear risk of bias in the 
applicability section, more specifically in the reference 
standard as it was not clear if its interpretation could 
have influenced the diagnostic accuracy estimates.

The results of assessment of quality evidence are shown 
in the supplementary material (i.e., Table S3 and Table 
S4). Overall, the quality of evidence from the outcome 
evaluated was recommended by the GRADE system as 
moderate for the thirty-six observational studies [15, 16, 
24, 44–57, 59, 60, 62–75, 77–79] and as high for the three 
RCTs [58, 61, 76].

All the included studies evaluated the diagnostic yield 
of at least one technique among WGS and WES. and UC. 
Diagnostic yield proportions ranged from 19.1 to 68.3% 
for WGS (15 studies) [24, 47, 51, 53, 55, 58, 60, 61, 63, 
67, 69–71, 76, 79], from 6.7 to 72.2% for WES (27 studies) 
[15, 16, 44–46, 48–50, 52, 54, 56, 57, 59, 61, 62, 64–66, 
68–70, 72–75, 77, 78], and from 0 to 22.2% for UC (10 
studies) [15, 47, 48, 53, 58, 60, 63, 68, 70, 78]. Meta-ana-
lytic synthesis yielded pooled diagnostic yield estimates 
of 7.8% (95% CI: [4.4 – 13.2]) for UC, 37.8% (95% CI: 
[32.9 – 42.9]) for WES and 38.6% (95% CI: [32.6 – 45.0]) 
for WGS (Fig. 3).

The meta-regression output suggested a possible trend 
towards a greater diagnostic yield of the WGS tech-
nique compared to WES after controlling for relevant 
covariates, although not attaining statistical significance 
(adjusted OR: 1.13 [95% CI: 0.79 – 1.62], p = 0.5001). 
Full detail of the meta-regression coefficients is 
reported in Table 1: of note, the confounding effect was 
particularly evident for the type of disease (monogenic 
vs non-monogenic, p = 0.0174) and – to a lesser extent – 
for the setting (ICU vs non-ICU, p = 0.1317), with a ten-
dency to a better diagnostic performance for Mendelian 
diseases and in non-ICU settings respectively. Stratify-
ing by the value of diagnostic yield (i.e., low and high), 
the effect for the type of disease is more evident in stud-
ies reporting a diagnostic yield higher than the pooled 
value (Table S5 and Table S6).

Furthermore, twelve studies comparing two of the 
three techniques were included in the network meta-
analysis: four studies compared UC against WES, five 
UC against WGS and only three directly compared WES 
against WGS (one of these also showed results for usual 
care). Besides confirming the superior performances of 
sequencing techniques over usual care, the network for-
est plot suggests a higher diagnostic yield for WGS com-
pared to WES (OR = 1.54, 95%CI: [1.11 – 2.12], Fig. 4a).

As depicted by the network diagram (Fig. 4b), all pair-
wise comparisons between techniques showed statisti-
cally significant differences.

Discussion
The present study suggests a higher diagnostic yield 
of WGS, with respect to WES (OR = 1.54, 95%CI: [1.11 
– 2.12]) and UC, for paediatric patients with suspected 
genetic disorders, with a propensity to better diagnostic 
performances for Mendelian diseases.

The combination of study findings provides support for 
a main implication that, despite an overall difference, in 
terms of diagnostic yield, of 2% between WES and WGS, 
the latter is notably suitable for a specific subgroup of 
patients (i.e., paediatric patients with suspected Mende-
lian disorders) in whom the diagnostic yield is 50% higher 
with respect to patients with suspected non-monogenic 
diseases.

Therefore, the adoption of WGS should be taken con-
sidering the different priorities characterizing at dif-
ferent level (i.e., macro-, meso-, and micro-level) of the 
decision-making process in healthcare system. At macro-
level, policymakers should assess the sustainability of 
this technology, consistently recognize the mechanisms 
underlying its overall financing, and try to define tai-
lored diagnosis-related groups (DRG) tariffs for the reim-
bursement of the inpatient health services specific to this 
innovative diagnostic test. At meso-level, healthcare pro-
viders should oversee the acquisition and monitoring of 
WGS use. At micro-level, healthcare professionals should 
develop the competencies for its provision across differ-
ent health settings. In a perspective of healthcare sustain-
ability, it is crucial to develop sound genomic policies and 
programs that take into account WGS by implementing 
the three core functions (i.e., assessment, policy devel-
opment, and assurance) to the provision of this genetic 
technique in health-care services [81].

[86]Another notable implication of whole genome 
sequencing (WGS) is that its wider utilization in diag-
nosis, which entails earlier and more accurate disease 
management, may limit the individual and societal 
impacts of disease, such as reducing the need for 
expensive and invasive follow-up testing or procedures 
and minimizing disease-related disability or mortality. 
This, in turn, could prevent or mitigate future burdens 
on healthcare systems in terms of both costs and out-
comes [83].Nevertheless, nowadays, it is noteworthy to 
highlight the large availability of WES in respect of the 
still limited adoption of WGS in the clinical practice. 
Therefore, being cognizant of a significant difference 
between WGS and WES in terms of costs and complex-
ity in interpreting data as well as the still slight gain 
in diagnostic yield of WGS over WES, there could be 
delays and hurdles in transferring WGS into the routine 
clinical workup.

The present systematic review and meta-analysis 
should be considered in light of its main strengths and 
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Fig. 3 Forest plot of the diagnostic yield of usual care, WES and WGS, reported in the studies included in the systematic review and meta-analysis, 
2015–2022
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limitations. First of all, the accurate literature review, 
the detailed quality assessment, the meticulous GRADE 
assessment of evidence quality, and the accurate meta-
analysis are strengths of this study. Furthermore, the 
quite elevated number of retrieved studies and the dif-
ferent geographical areas, in which they are conducted, 
could increase the generalizability of the present sys-
tematic review.

The majority of (92%) studies considered for GRADE 
assessment adopted an observational study design, even 
though the rigorous methodology for assessing the evi-
dence quality across the studies was followed. The papers 

included for pooled analyses reported a considerable 
heterogeneity, albeit it can be justified by the clinical 
and methodological diversity (i.e., different sample size). 
Another caveat of this article is that subgroup analysis on 
the diagnostic yield of specific investigated conditions, 
in the included papers, was not conducted, which may 
limit the generalizability of the findings to certain dis-
eases. Moreover, it was not possible to fully investigate 
the genetic underpinnings of the investigated conditions 
due to the lack of available primary data on the specific 
sequenced mutations, thus limiting the superiority of 
WGS over the other sequencing techniques.

Over the last few years, the cost of WGS has drop 
down markedly potentially bringing it within the realm 
of cost-effectiveness for high-intensity medical practice, 
such as occurs in NICUs [17]. WGS has several advan-
tages over other sequencing methods. Firstly, it offers the 
possibility to perform Mendelian gene discovery, which 
involves identifying the genetic basis of rare inherited 
disorders. Additionally, it has the potential to identify 
modifier genes, which are genes that modify the sever-
ity or course of a disease caused by a primary genetic 
mutation. Another advantage of WGS is that a single 
genome-wide test can replace multiple panel tests, saving 
time and resources and shortening the "diagnostic odys-
seys". WGS also allows the creation of sufficiently large 
genome-wide datasets, which might be used to predict 
the risk of developing further complex diseases. Finally, 
WGS can sequence non-coding variants and detect large 

Table 1 Meta-regression analysis

Abbreviations: CI Confidence interval, WES, Whole exome sequencing, WGS 
Whole genome sequencing, NICU Neonatal intensive care unit, PICU Paediatric 
intensive care unit, UC Usual care

Adjusted Beta Odds Ratio [95% CI] p-value

Technique (reference = WES)

    UC -1.763 0.17 [0.11—0.27]  < 0.0001

    WGS 0.124 1.13 [0.79—1.62] 0.5001

Monogenic disease, 
yes

0.399 1.49 [1.07—2.07] 0.0174

NICU/PICU setting, 
yes

-0.252 0.78 [0.56—1.08] 0.1317

Publication date, 
after 2017 (refer-
ence = before 2017)

0.178 1.19 [0.83—1.73] 0.5452

Fig. 4 Results of the network meta-analysis comparing different diagnostic techniques. a Forest plot. Estimates are reported in the form of 
odds ratios, and the WES test is taken as reference. b Diagnostic yield network diagram. Red highlighting means significant difference between 
techniques (i.e., all relationships are significant). Thickness is proportional to the inverse standard error of each model comparing two techniques
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insertions/deletions usually undetected by WES and 
UCT, providing a more comprehensive picture of an indi-
vidual’s genome [82]. Further research rigorously assess-
ing costs, effectiveness, cost-effectiveness, organizational 
impacts, ethical aspects of WGS in a health technology 
assessment perspective [83] in a transparent manner is 
mandatory to allow for a more informed decision-mak-
ing process in this context.

Moreover, additional primary studies (preferably high-
quality RCTs with larger samples) firstly evaluating the 
comparison between WGS and WES and then between 
WGS and standard genetic testing, are required to deeply 
investigate the differences in costs and diagnostic yield 
and to increase the level of quality evidence.

Conclusion
Whole genome sequencing for the paediatric population 
with suspected genetic disorders allows an accurate and 
early genetic diagnosis in a high proportion of cases. This 
provides understanding of the molecular mechanism 
underlying diseases, supports tailored treatments and 
accurate genetic counselling, while reduces the burden of 
unsolved cases that weigh on patients and their families 
[25] by putting end to the so called “diagnostic Odyssey” 
[84, 85]. The present review suggests the use of WGS in 
the diagnostic workup of ill paediatric patients with sus-
pected genetic disorders strengthened by evidence at 
policy, program, and intervention levels. Our study also 
reinforces the use of methodologies capable of provid-
ing robust evidence for the formulation of health policy 
on funding, to overcome present hurdles in transition-
ing WGS from the research setting into routine clinical 
practice. However, there is a pressing issue of efficiently 
allocating limited healthcare resources for HTA agen-
cies when it comes to WGS approaches. Overcoming this 
challenge will be critical to realizing the potential ben-
efits of WGS for improving patient outcomes and reduc-
ing healthcare costs.
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