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Abstract 

Background Despite the widespread interest in meta-analysis of proportions, its rationale, certain theoretical 
and methodological concepts are poorly understood. The generalized linear models framework is well-established 
and provides a natural and optimal model for meta-analysis, network meta-analysis, and meta-regression of propor-
tions. Nonetheless, generic methods for meta-analysis of proportions based on the approximation to the normal 
distribution continue to dominate.

Methods We developed metapreg, a tool with advanced statistical procedures to perform a meta-analysis, net-
work meta-analysis, and meta-regression of binomial proportions in Stata using binomial, logistic and logistic-normal 
models. First, we explain the rationale and concepts essential in understanding statistical methods for meta-analysis 
of binomial proportions and describe the models implemented in metapreg. We then describe and demonstrate 
the models in metapreg using data from seven published meta-analyses. We also conducted a simulation study 
to compare the performance of metapreg estimators with the existing estimators of the population-averaged 
proportion in metaprop and metan under a broad range of conditions including, high over-dispersion and small 
meta-analysis.

Conclusion metapreg is a flexible, robust and user-friendly tool employing a rigorous approach to evidence syn-
thesis of binomial data that makes the most efficient use of all available data and does not require ad-hoc continuity 
correction or data imputation. We expect its use to yield higher-quality meta-analysis of binomial proportions.
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Text box 1. Contribution to the literature

• Explain the key concepts and rationale in methods for meta-
analysis.

• Highlight the misconceptions, theoretical and methodological 
flaws in the current methods for meta-analysis of proportions.

• Explain the logistic regression models employed by the Stata 
package metapreg for meta-analysis, network meta-analysis, 
and meta-regression of proportions.

• Demonstrate metapreg’s functionality using data from previ-
ously published meta-analyses.

• Conduct a simulation study to compare metapreg’s perfor-
mance with current methods under a broad range of conditions 
including high over-dispersion and small meta-analysis.

Background
Meta-analyses offer an efficient way to synthesize infor-
mation from different sources, facilitating evidence-based 
decision-making. Unless sound statistical techniques are 
used, inference from a poorly conducted meta-analysis 
can lead to erroneous conclusions.

Meta-analysis is often viewed as a method for aggre-
gating study results into a single estimate [1]. However, 
it is a study of multiple studies, aiming to synthesize their 
findings [2, 3]. Most techniques employed in practice for 
combining study results are grounded in either the com-
mon-effect (CE, also known as the fixed-effect) model or 
the random-effects (RE) model. These models are under-
pinned by distinct underlying assumptions about the 
included studies and their summary results are subject to 
differing interpretations [4, 5].

We distinguish the two models by their mathemati-
cal expressions, statistical properties and practical dif-
ference. Traditionally, a linear regression model is 
employed to directly fit study parameter estimates, 
simplifying the statistical aspects with straightforward 
equations known as weighted least squares (WLS). In 
the CE model, the observed effect in a study (denoted 
as ‘j’) is expressed as the sum of a fixed effect θ com-
mon to all studies and a sampling error, represented by 
the estimated within-study variance ν̂2j  . This formula-
tion implies that the observed variability in the data is 
solely attributed to chance. However, it  is common to 
find that the observed variability exceeds what can be 
explained by the CE model. This is referred to as over-
dispersion. Neglecting this excess variation results in an 
underestimation of the standard error of the estimate 
for θ , leading to potentially misleading inferences. To 
address overdispersion, the standard approach intro-
duces a study-specific random effect δj with a distri-
bution N (0, τ 2) into the CE model to account for the 
excess variation. This is the RE model. τ 2 represents the 

between-study variation. When τ 2 equals zero, the RE 
model collapses into the CE model. In practical applica-
tion, techniques based on the RE model typically do not 
directly address the issue of overdispersion. Instead, they 
employ a strategy to alleviate its effects by adjusting the 
study variance with the incorporation of the τ 2 estimate. 
Consequently, this adaptation results in an enlargement 
of the standard error associated with the RE model’s θ 
estimate. In an alternative approach, overdispersion is 
considered a nuisance and corrects the standard errors 
of the CE model’s θ estimate.

A meta-analysis of proportions makes inferences about 
the study parameter π given the number of study events 
n and the sample size N of the study. Naturally, n is 
assumed to follow a binomial distribution and functions 
like the odds ratio  (OR) and/or the rate ratio (RR) are 
derivatives of π . The ordinary logistic regression model 
is a generalized linear model (GLM) [6]; an extension of 
the linear regression model for binomial data. When the 
observed variation is more than explained by the ordi-
nary logistic regression model, normally distributed error 
terms are added to the model corresponding to differ-
ent sources of variation in the data. The resulting logis-
tic regression model formulation is a generalized linear 
mixed model(GLMM) [6, 7]. The alternative approach to 
handle over-dispersion in the binomial distribution uses 
the beta-binomial regression model. This is the exact 
likelihood framework for meta-analysis of proportions. 
The computations involved in these models are inten-
sive and processing the model parameter estimates into 
meaningful results requires programming and statistical 
expertise.

To simplify the problem, the study estimate π̂ = n
N  (or 

a function of π̂ ) and its variance are plugged in the WLS 
computations of the linear regression model. This is the 
approximate likelihood framework where the the normal 
distribution approximates the distribution of a binomial 
parameter. Stata packages developed within this frame-
work include metaprop [8], metan [9], metaan [10] 
and mvmeta [11]. As from Stata 16, the CE and RE mod-
els can be fitted using the command meta [12].

WLS is an extension of the ordinary least squares 
(OLS). The computations in OLS count the data points 
from each study equally. Conversely, WLS counts more 
the data points from studies with low error variances 
by giving them more weight - the inverse variance (IV) 
weighting scheme. The most popular procedure for cal-
culating the weights in the RE model was proposed by 
Dersimonian-Liard (DL) [13] - a parameter τ 2 is added to 
the variance of the study parameter estimates. To bridge 
the statistical principles of the CE linear regression model 
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and the Dersimonian-Liard RE model, Doi et  al. [1, 14] 
proposed the inverse variance heterogeneity (IVhet) and 
the quality-effects (QE) models classified in the quasi-
likelihood framework. The Stata procedures metan [9] 
and mvmeta [11] extend to this framework.

There is a misconception that methods for meta-anal-
ysis that explicitly define weights are sound. However, 
treating the within-study standard errors used in weight-
ing the studies as known is a fundamental flaw [15]. A 
major criticism towards the current RE linear model 
for meta-analysis is its use of study weights that are not 
inversely proportional to the study sizes [16]. The logistic 
regression is well-established and provide a natural and 
optimal model for evidence synthesis of binomial data. 
However, their rationale, certain theoretical and meth-
odological aspects are poorly understood especially their 
unorthodox implicit weighting mechanism. The logistic 
regression estimates are the limit of a sequence of WLS 
where the weight changes at each cycle. Throughout the 
optimization process, studies with more statistical power 
get more weight.

With the availability of software for maximum likeli-
hood (ML) estimation of model parameters within the 
exact likelihood framework, the computational simplic-
ity of the WLS is no longer relevant. metaprop_one 
[17] is a Stata procedure developed in 2014 within the 
exact likelihood framework. However, it has limited 
capabilities and functionality. It synthesizes results from 
one group or per subgroup by one categorical covariate. 
Moreover, the model parameter estimates are only par-
tially processed for useful inference. To further close the 
gap between accessible procedures for meta-analysis of 
proportions and the end-users, we developed metapreg 
[18] in Stata 14 to perform meta-analysis, meta-regres-
sion and network meta-analysis of binomial proportions 
using binomial, logistic and logistic-normal models.

The rest of the paper is as follows. First, we establish 
the connection from classical regression model to meta-
analysis. This will be followed by a quick review on the 
current methods for meta-analysis. We then discuss 
the theoretical and methodological flaws in the current 
methods for meta-analysis of proportions. We will then 
describe the logistic regression models for meta-analysis 
of proportions and demonstrate the fitting of the mod-
els with metapreg using data from previously pub-
lished meta-analyses. Afterward, we will show that the 
RE logistic regression model is robust under a broad 
range of conditions including high over-dispersion and 
small meta-analysis. The last section concludes with a 
discussion.

The classical linear model
The classic linear regression model is a particular case 
of the GLM. From a statistical point of view, a model 
is a mathematical expression formulated to decently 
describe the behavior of I outcome responses of a vari-
able Y = (Y1, . . . ,YI ) and the covariates X = (X1, . . . ,Xk) 
in a given study.

Formulation
A linear regression model expresses the statistical relation 
between the outcome responses and the covariates as the 
sum of two components; the mean function (expressed in 
terms of the covariates) and the error function

where Yi denotes the ith data point. Let X0 = 1 . In a sim-
ple linear regression model Yi is a the sum of the overall 
mean β0 and the sampling error ǫi

ǫi represents the ith deviation from the overall mean. The 
deviations are assumed to be identical, independent, cen-
trally located around zero and with constant variance

Estimating β0 and var(β̂0)
Based on the principle of OLS, simple algebra yields

These estimates are valid irrespective of the actual dis-
tribution of Y (or of ǫ).

Inference about β0
To compute the confidence intervals (CI) for β̂0 and per-
form hypothesis tests about β0 , it is essential to know its 

(1)Yi = mean function+ errori for i = 1, . . . , I

(2)Yi = X0β0 + ǫi ≡ β0 + ǫi for i = 1, . . . , I

(3)

mean(ǫi) = 0

var(ǫi) = σ 2

implying therefore that

mean(Yi) = β0

var(Yi) = σ 2

cov(Yi,Y
′
i ) = 0 for any i �= i′.

(4)

β̂0 = Ȳ

=
I
i=1 Yi

I

σ̂ 2 =
I
i=1(Yi − β̂0)

2

I − 1

var(β̂0) =
σ̂ 2

I



Page 4 of 39Nyaga and Arbyn  Archives of Public Health           (2024) 82:14 

sampling distribution. Essentially, we want to know, if 
we take another sample of Y and compute another value 
of β̂0 , how close it will be to the original estimate. Once 
we know the distribution, we can identify its lower and 
upper critical values, and the rejection region at α(typi-
cally 5% ) level of significance. Resampling methods e.g. 
bootstrap, generate the sampling distribution by per-
muting (e.g. sampling I times with replacement) Y many 
times, each time re-calculating β̂0 . This method is com-
putationally expensive, especially in complex models. 
Conventionally, a known distribution is assumed. Since 
β̂0 is a function of Yi (see equations 4), and Yi is function 
of ǫi (see equation 2), if the sampling distribution of ǫi is 
known, the sampling distributions of Yi and β̂0 is auto-
matically known. The normal distribution is the stand-
ard assumption because it simplifies the calculation and 
inference.

Consequently, the OLS estimates in equations (4) are 
also ML estimates.

When σ 2 is known or the sample size I is sufficiently 
large, the Wald CIs and Wald test statistics can be used 
for inference. Often, the sample size is small ( I < 30 ) and 
σ 2 unknown, and proceeding with inference based on the 
asymptotic normality of β̂0 would be misleading. In such 
cases, the actual coverage probability of the Wald CIs 
often falls below the nominal confidence coefficient. By 
replacing σ 2 in β̂0 ∼ N (β0,

σ 2

I ) with its estimate σ̂ 2 from 
equation (4), elementary probability theory implies that 
the exact distribution of β̂0 is the t-distribution with I − 1 
degrees of freedom. When there are C covariates in the 
regression model, the t-distribution will have I − C − 1 
degrees of freedom. Like the normal distribution, the 
t-distribution is symmetric and bell-shaped but with 
heavier tails. For large sample sizes, the two distributions 
are practically the same.

Connecting meta‑analysis to the linear model
Consider the randomized complete block design in the 
analysis of variance where subjects are grouped into J 
homogeneous populations (the blocks), and treatment 
is assigned randomly to each subject within the blocks. 
Let Yij and Xij denote the outcome response and the vari-
able of interest (a treatment/intervention) from subject 
i in population j, respectively. Other blocking variables 
Zj = (Zj0, . . . ,ZjC) can be utilized to further reduce the 
variation between the subjects within a block.

(5)

ǫi ∼ N (0, σ 2) implying

Yi ∼ N (β0, σ
2) so that

β̂0 ∼ N (β0,
σ 2

I
)

Similar to such a design, meta-analysis is a study of sepa-
rate studies addressing the same research question and 
with a similar design to integrate the study results. In prac-
tice, obtaining the individual patient data Yij or sufficient 
summaries e.g. 

∑
Yij = Yj is time-consuming, expensive 

and often impossible. Conventionally, a generic model is 
directly fitted to the study parameter estimates β̂j because it 
simplifies the analysis. In the following sections, we review 
the main models used in this context: the formulation, 
assumptions, estimation, inference and the effects of viola-
tion of assumptions on estimation and inference.

The CE linear regression model
Let Z0 = 1 . Similar to equation (2), a study parameter esti-
mate β̂j is the sum of an average value µ0 and the study’s 
sampling error ξj

Estimating µ0 and var(µ̂0)
The error terms ξj are assumed to be independent and cen-
trally located around zero i.e. E(ξj) = 0 . However, unlike in 
equation (3), their variances var(ξj) = ν2j  are variable 
implying that the parameter estimates do not have the 
same reliability. This feature is equivalent to heteroscedas-
ticity in the classical linear regression model (2). To account 
for the differences in reliability, the estimation equations (4) 
are modified by assigning a weight to each data point. Con-
ventionally, the weights given are inverse to the within-
study variance wj = 1

ν2j
 so that precise and/or larger studies 

with smaller variances (more reliable information) get 
more weight. This is the inverse-variance (IV) weighting 
scheme.

Based on the principle of WLS, the modified estimation 
equations are

Like OLS, WLS does not require knowledge of the distri-
bution of the study parameter estimates β̂j.

Inference about β̄ce
To compute the CIs for the average of the study param-
eter estimates β̄ce and conduct hypothesis tests about it, 
we need to know its sampling distribution (or equivalently 
of β̂j or ξj ). Analogous to the distribution specifications 
(5), the standard assumption is the normal distribution 
ξj ∼ N (0, ν2j ) so that

(6)β̂j = Z0µ0 + ξj ≡ µ0 + ξj for j = 1, . . . , J

(7)

µ̂0 = β̄ce =
∑J

j=1 wjβ̂j
∑J

j=1 wj

and

var(β̄ce) =
J∑

j=1

wj ≡
J∑

j=1

1

ν2j
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The within-study variance ν2j  is a random variable. Ide-
ally, a variance function should be estimated by regress-
ing the squared residuals or the sample variances against 
an “appropriate” predictor variable. The fitted values 
from the variance function are then used to obtain ν2j  
[19]. Unfortunately, information on the “appropriate” 
predictor variable is never available. Conventionally, ν2j  is 
replaced with the estimated study sample variances ν̂2j  so 
that

The inference is now approximate because the estima-
tion of ν̂2j  introduces another source of uncertainty. The 
approximate Wald CIs are known to perform poorly but 
their use is common. The bootstrap CIs are more con-
servative than the Wald CIs [20] but their use is seldom. 
The direct use of ν̂2j  leads to underestimation of 

∑J
j=1 wj . 

Consequently, the CIs will be narrower and the p-values 
smaller than when the uncertainty would be accounted 
for. When the number of studies in the meta-analysis is 
large enough, the direct use of sample variances to esti-
mate the unknown within-study variances may be jus-
tified. This is because the weights become essentially 
irrelevant. Alternative weighting schemes use a function 
of the study size only. Some of the arguments for not 
using the within-study variance are

• To avoid giving large weights to small but precise 
studies especially when there are few studies.

• To avoid the estimation error in the within-study var-
iance [21].

• To assign uniform weight regardless of the metric of 
the effect size [22].

Overdispersion
There is overdispersion when the observed variation in 
the data is more than explained by a model. Ignoring 
the excess variation underestimates the standard errors 
of the regression coefficients resulting in misleading 
inference. From the goodness of fit perspective, over-
dispersion indicates a lack of fit. The inadequacy in the 
model maybe due to the omission of important study 

(8)

β̂j ∼ N (µ0, ν
2
j ) and consequently

β̄ce ∼ N

(
µ0,

J∑

j=1

1

ν2j

)

(9)

β̂j ∼ N (µ0, ν̂
2
j ) and consequently

β̄ce ∼ tJ−1

(
µ0,

J∑

j=1

1

ν̂2j

)

characteristics in the model, data coming from a popu-
lation having different sub-populations, or the presence 
of correlation [6, 23]. When there are sufficient number 
of studies in the meta-analysis, some of the excess varia-
tion can be attributed to known study characteristics in 
a meta-regression. However, this is not common prac-
tice because many meta-analyses do not have a sufficient 
number of studies to incorporate study characteristics 
into the model. Even when there are adequate studies 
and there are known study characteristics, the CE model 
is used because the WLS computations involved in a 
meta-regression become complex or inapplicable.

We briefly review the current techniques to handle 
overdispersion in the CE model (6). These techniques 
treat overdispersion as a nuisance and handle its impact 
by inflating the study variances. If overdispersion is due 
to the CE model overlooking differences among β̂ that 
may be important to recognize, making an adjustment 
for overdispersion will not address the inadequacy.

Likelihood approaches to handle overdispersion
The RE linear regression model
A study parameter δj is added to the regression 
equation 6:

Conventionally, the δj is assumed to be normally 
distributed

Rewriting equations (10) and (11) as

implies that the expected study means (µ1, . . . ,µJ ) are 
normal random variables from a population of studies 
with mean µ0 and variance τ 2 . τ 2 represents the vari-
ability between the study means. The two random com-
ponents ξj and δj in equation (10) are uncorrelated. It is 
automatic then that

There are different methods to obtain an estimate of 
τ 2 including the method of moments (MOM), ML and 
restricted maximum likelihood (REML) [24]. The accu-
racy of the estimated τ 2 depends on the estimation 
method and the number of studies I. The REML estima-
tor is more efficient and reliable than the popular 

(10)β̂j = µ0 + δj + ξj

(11)δj ∼ N (0, τ 2)

(12)
β̂j = µj + ξj

µj ∼ N (µ0, τ
2)

(13)
var(β̂j) = ν̂2j + τ 2

β̂j ∼ N (µ0, ν̂
2
j + τ 2).
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Dersimonian-Liard MOM estimator [25] even when 
there are few studies ( J ≤ 5 ) [26]. Once τ 2 is estimated, 
the weights in equations (7) are replaced with 
w∗
j = 1

(ν̂2j +τ̂ 2)
 . The modified estimation equations are

The addition of τ̂ 2 to the study variances increases 
the standard errors of the weighted mean by penalizing 
studies with small variance (usually the large studies). 
As τ 2 increases, the distribution of the weights between 
the studies become increasingly even. This distortion of 
weights may lead to contradictory conclusion [1, 5].

Thompson and Sharp [27] multiplicative model 
A multiplicative parameter is added to the CE model (6) 
to expand the study variances by a constant φ

φ represents the degree of overdispersion. It is estimated 
as the mean square error from regressing β̂j against a 
constant with weights wj = 1

ν̂2
 and extracting the mean 

squared error. The estimate is set to 1 if its < 1. After esti-
mating φ , the new weights w∗

j = 1

φ̂ν̂2
 are plugged into 

equations (14). In the equation for µ̂0 , φ̂ falls off implying 
that the estimated average value β̄mts will be identical to 
β̄ce and the standard error will be inflated by a factor 

√
φ.

There barely are significant differences in terms of 
Akaike Information Criterion (AIC) between this model 
and the RE model (13) with the ML τ 2 estimator [28]. 
Despite its simplicity, its use is discouraged - the ration-
ale for using a multiplicative factor for variance inflation 
is weak [27, 29].

Kulinskaya and Olkin [30] multiplicative model
The φ in model (15) is replaced by a linear function of the 
study sizes Nj and the intra-cluster correlation (ICC) ρ 
thus allowing for the deflation of within-study variance as 
well.

(14)

β̄re =
∑J

j=1 w
∗
j β̂j∑J

j=1 w
∗
j

and

var(β̄re) =
J∑

j=1

w∗
j =

J∑

j=1

1

ν̂2j + τ̂ 2
.

(15)
β̂j = µ0 + ξj

√
φ which implies

β̂j ∼ N (µ0,φν̂
2
j )

(16)
β̂j ∼ N

(
µ0,

(1− ρ)(1+ Njγ )

Nj
ν̂2j

)
for

γ = ρ

1− ρ
>

−1

max(Nj)

There are a variety of methods to estimate the param-
eter γ including MOM, ML, REML, Mandel-Paule none 
of which is uniformly the best, regardless of the criterion 
[30]. After obtaining an estimate of γ , the new weights 
are plugged in equations (14) to obtain β̄ko and its vari-
ance. This model is rarely applied possibly because

• The coverage of the resulting approximate Wald CI is 
considerably lower than nominal compared to the RE 
model.

• Underdispersion is less frequent in practice.
• Allowing for deflation of variance is discouraged [28].

Approximate inference about µ̂0 in the RE 
and the multiplicative models
Because β̂j is assumed to be a normal variate, the approx-
imate sampling distribution of µ̂0 is often assumed to be 
normal. However, the approximate Wald test and approx-
imate Wald CI have a downward bias. This should be 
resolved by using approximate t-distribution with J − 1 
degrees of freedom [15, 31, 32].

Quasi‑likelihood approaches to handle overdispersion
The idea is to modify the estimation equations from a 
corresponding likelihood method to make them suf-
ficiently flexible and “work” at the same time. The new 
estimation equations may not correspond to a known or 
any distribution hence the distribution of β̂j is considered 
unspecified.

IVhet model [1]
New estimation equations are derived based on concepts 
from the multiplicative models (15) and (16) and the RE 
model (13).

The within-study variances in the estimations equa-
tions (7) are expanded by an overdispersion parameter 
ψj ; a function of ICC ρj which is a function of the Der-
simonian-Liard MOM estimator τ 2 from the RE model 
(13) yielding

(17)

w∗
j = 1

ψj ν̂
2
j

where

ψj =
1

1− ρj
where

ρj =
τ̂ 2

τ̂ 2 + ν̂2j
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ψj falls off in the computation of µ̂0 implying that the 
estimated value β̄ivhet will be identical to the β̄ce and β̄mts . 
Its variance is inflated to 

∑J
j=1

1
ψj ν̂

2
j

.

Doi et al. [1] compared the coverage probability of the 
approximate Wald CI of β̄ivhet from this model and  β̄re 
from  the RE model (13) with Dersimonian-Liard MOM 
τ 2 estimator; the former had a coverage probability close 
to the nominal level.

QE model [14]
New estimation equations using synthetic weights that 
incorporate study quality are derived. The synthetic 
weights - the reciprocal of the sum of the estimated 
within-study variances and an internal bias φj - are cre-
ated through a quality score Qj:

where γ̂j is an adjustment [14] (function of Qj and ν̂2j  ) to 
prevent the possibility of negative synthetic weights. τ 2 
is the Dersimonian-Liard MOM estimator from the RE 
model (13). When quality information is available, Doi  
et al. [14] showed that the QE model handles the effect 
of overdispersion better than the RE model with the 
Dersimonian-Liard MOM τ 2 estimator.

The attractiveness of the quasi-likelihood approach is 
that it requires fewer assumptions than a full likelihood 
approach but the number of studies in the meta-analysis 
should be sufficiently large for asymptotic inference. The 
main disadvantage is that model comparison procedures 
using the Likelihood Ratio (LR) tests, AIC or Bayesian 
Information Criteria (BIC) are not possible because the 
distribution of β̂ is not specified [33].

Meta‑analysis of proportions in the framework 
of linear models
We refer to the study j with a fixed number of binary 
responses Yij generically labelled “success” (alive/
healthy/cured) and “failure” (dead/sick/not cured). Let 
nj be the number of “successes” and Nj be the sum of 
‘successes’ and ‘failures’. It is natural to assume that nj is 
a binomially distributed random variable with param-
eters Nj and πj ; the probability of “success”. The distri-
bution is denoted by

(18)

w∗
j = 1

(ν̂2j + φ̂2)
≈ Qj

ν̂2j
+ γ̂j

µ̂0 = β̄qe =
∑J

j=1 w
∗
j β̂j∑J

j=1 w
∗
j

var(β̄qe) =
J∑

j=1

[(w∗
j )

2(ν̂2j + τ̂j)]

The πjs are the parameters of interest. The MOM and 
the ML estimator for πj is π̂j = nj

Nj
 . Its variance is

Problems in one group meta‑analysis
Let  ŵ−1

j = ν̂2j  , the WLS and the ML estimate for the 
average value π̄iv is

1 When nj = 0 or nj = Nj , ν̂2j = 0 implying ŵj is unde-
fined  leading to the exclusion of the study from the 
analysis. To keep the study, an ad hoc continuity 
correction is applied. The exclusion of studies and 
application of the continuity correction can result in 
biased estimates [34].

2 When J is small and/or π̂j is near 0/1, the distribution 
of π̂j is likely to be skewed and discrete. The symme-
tricity of the normal (or t) distribution allocates equal 
probability to each tail. This is reasonable whenever 
the proportions are all around 0.5. However, when π̂  
is near zero or one, the symmetricity violates the 
natural boundaries of the π . It is then possible to 
have studies with confidence intervals outside the 
admissible interval [0, 1] in the forest plot.

3 The within-study variance ν̂2j  is a function of 
mean π̂j . This mean-variance relationship has two 
implications: 

(a) Ignoring the dependence may bias the esti-
mates for π̄iv and its variance [35, 36].

(b) The domains of π̂j and ν̂2j  are constrained (in 
contrast, the variances in the normal distribu-
tion are unbound and independent of the 
mean). As π̂j moves towards 0 or 1, ν̂2j  moves 
towards 0, is highest when π̂j = 0.5 , and never 
exceeds 0.25Nj

 . This then constrains the domain of 
the dispersion parameters. Thus, correcting for 
overdispersion without formal modeling (i.e. 
support from the data) may be misleading.

(19)nj ∼ bin(πj ,Nj)

(20)ν̂2j = π̂j(1− π̂j)

Nj
= nj(Nj − nj)

N 3
j

(21)

π̄iv =
∑J

j=1 ŵj
nj
Nj∑J

j=1 ŵj

=
∑J

j=1

N 2
j

Nj−nj

∑J
j=1

N 3
j

nj∗(Nj−nj)
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Several actions are taken in an attempt to achieve sym-
metricity and stabilize the study variances. Transfor-
mations such as logit and arcsine-based have been the 
obvious recourse for the longest time simply due to their 
mathematical simplicity. The Stata package metaprop 
popularized the Freeman-Tukey double arcsine trans-
formation (FTT) [37]. Following the high recommenda-
tion of the FTT by Doi et  al. [38] the Stata procedures 
metaan and metan have also implemented the FTT. 
However, its conversion formula has a structural defect. 
The back-transformed values can sometimes fall outside 
the admissible [0, 1] range depending on the “overall 
sample size”. There is no consensus nor justification for 
what should be the “overall study size”;  the harmonic, 
geometric, or arithmetic mean of the study sizes. Doi 
et al. [38] discourages using any of the means and recom-
mends the inverse variance [39] as the “overall sample 
size” which has the benefit of avoiding the inadmissible 
values. This structural defect exists simply because the 
FTT was never intended for use in meta-analysis but for 
inference in a single study [37]. Moreover, the transfor-
mation obscures the true nature of the data by break-
ing the mean-variance relationship in binomial data 
in order to stabilize the variance. More inadequacies of 
the Freeman-Tukey double arcsine transformation are 
detailed elsewhere [39–43]. Theoretical derivations and 
simulations have demonstrated considerable biases in the 
parameter estimates arising from the logit and the arc-
sine transformations [44, 45].

Problems in two group meta‑analysis
In meta-analysis comparing two proportions, the log-
transformed estimated relative risks or odds ratios and 
their standard errors are used e.g. in metan, metaan, 
mvmeta and meta. When there are no events in either 
group, the estimated ratio (RR or OR) is undefined or 
0, and  such studies are excluded from the analysis. It 
is argued that they provide no information on which 
group has the higher risk when using the OR as an out-
come measure. However, simulations have shown that 
these studies contain information and can influence the 
conclusion of the meta-analysis [46]. To avoid excluding 
these studies, an ad hoc continuity correction is applied. 
It is possible that the addition of a continuity correc-
tion could swamp the data and have a marked effect on 
the results. If there are more than two groups, meta 
offers support for meta-regression. The common prac-
tice however is to examine the differences informally in 
a subgroup analysis. This ignores the covariance among 
variables which can lead to spurious significant effects, 
confounded effects [47], and invalid standard errors. A 
simulation study [48] showed that the inverse-variance 

weights methodology was by far the most unreliable in 
meta-analysis comparing two proportions.

The problem of data reduction
Corresponding to each study, there is a probability dis-
tribution of the binomial variables. In order to use the 
point estimates of the binomial parameters and their 
estimated variances, we perform data reduction and 
certainly lose some information about the original data. 
In presence of overdispersion, the addition of τ̂ 2 to the 
study variances to compute the RE weights introduces 
a distortion to the data. The “new RE” data share little 
in common with the original data and therefore there is 
no guarantee that the corresponding solution is valid for 
the original inference problem. The motivation for the 
data reduction is minimizing the computational effort 
required to solve the problem e.g. use of the MOM τ̂ 2 
in WLS. The principle of ML is a data reduction method 
that does not discard important information about the 
unknown parameters [49]. However, if data reduction is 
done prior to application of ML, the discarded data will 
never be analyzed.

Given these limitations, it is best to abandon the proce-
dures based on approximation to the normal distribution 
and use/develop a better modeling approach that 1. is 
more appropriate for the natural distribution of the pro-
portions, and 2. does not discard important information 
about the unknown parameters.

Meta‑analysis of binomial proportions in the framework 
of the GLM and GLMM
Choice between models
To model proportions, the binomial distribution is gen-
erally appropriate or very close to appropriate. In a 
binomial model, overdispersion occurs when the mean-
variance relationship breaks down due to the non-con-
stancy of the binomial parameter among the studies. As 
a consequence, the variation in the observed proportions 
will exceed the variance of the binomial distribution. The 
systematic differences among the studies can be incorpo-
rated in a hierarchical model using an indicator for each 
study. These indicators are assumed to follow a normal or 
beta distribution.

The pool of individuals in the studies is expected to 
differ by important factors such as intervention assign-
ment, study protocol, clinical setting, etc. This informa-
tion is easily incorporated into  a hierarchical model in 
a meta-regression as covariates. When there are covari-
ates, the appropriateness of a regression model and the 
parsimony of the model fit must always be considered. 
Significant covariates could be dropped due to low sta-
tistical power [47] if there are too many covariates in the  
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model. In comparative analysis, the covariate of interest 
might not be statistically significant. Nonetheless, because 
it  is central to the purpose of the meta-analysis, it is sen-
sible to keep it in the model. It may also reduce bias in the 
estimated effects of the other covariates. To assess the par-
simony of the model fit, both the Wald test and the LR tests 
can be conducted in hypothesis testing. Should there be a 
conflict between the Wald and the LR test, the LR test result 
is a more powerful test. The results of these tests provide 
evidence on whether the model fits the data reasonably well. 
Non-convergence and inestimable effects are other indica-
tions of lack of fit for which we recommend fitting a simpler 
model. Besides the Wald and the LR tests, one can also use 
the BIC to select the optimal model with the lowest value.

Computing
We fit the models presented in the following sections 
using the Stata package metapreg. With a connection 
to the internet, directly install the program into Stata

. ssc install metapreg

After the installation is complete, you can open the help 
window for a detailed description of the command options 
and demonstration examples. The datasets used in the 
demonstration examples are available with a click.

. help metapreg

Table 1 Some of the options in metapreg 

Option in metapreg Descriptions Remarks

model() Specifies the type of the model. There are three types of the model; model(hexact), 
model(random) which is also design(mixed), 
and model(fixed).

design() Specifies the structure of data and the covariance structure 
of the random effects.

There are five different structures of data anticipated; 
design(general), design(comparative), 
design(pcbnetwork), design(mcbnetwork) 
and design(abnetwork). When there are two 
random effects in a comparative analysis, the possible 
covariance structures are design(comparative, 
cov(independent)), design(comparative, 
cov(unstructured))

smooth() Requests for the model-based study estimates. Provides a visual assessment of whether the model is a good 
data summary.

cimethod() Specifies the type of confidence intervals for the study-
specific estimates as displayed in the forest plot.

For proportions, the possibilities are cimethod(exact), 
cimethod(wald), cimethod(wilson), 
cimethod(agresti), and cimethod(jeffreys). 
For comparative and paired data, only cimethod(cml) 
is allowed when computing the CI for the probability ratios. For 
matched data, the only possibility for probability ratios 
is cimethod(koopman). For the odds ratios, the possibili-
ties are cimethod(exact), cimethod(cornfield) 
and cimethod(woolf).

nomc Instructs the program not to conduct model comparison 
in meta-regression.

Not fitting simpler models than what is requested saves time.

by() Requests the summary estimates at the unique values 
of the by variable.

Can be useful when the model contains multiple covariates 
and grouped summary estimates are required.

stratify Together with the option by(), the stratify option 
makes it possible to fit separate models in each group 
of data in the by variable, but present the results in one table 
and forest plot.

In contrast; the prefix command by: would print out separate 
tables and graphs for each sub-analysis.

sumtable() Indicates the type of summary estimates to display. The possibilities are sumtable(logit), 
sumtable(abs). When there are categorical data 
in the model, sumtable(rr) or sumtable(or) are 
also allowed. All tables are displayed with sumtable(all). 
By default, none of the tables are displayed.

outplot() specifies which statistics to display on the forest plot. outplot(abs) displays the study-specific and sum-
mary proportions. outplot(rr) and outplot(or) 
displays the study-specific probability and odds ratios 
when data are from comparative, paired, or matched stud-
ies. In the case of network meta-analysis, outplot(rr) 
and outplot(or) displays the summary probabil-
ity and odds ratio(s) of the multiple treatments relative 
to the specified reference.
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Table  1 highlights some features of metapreg. By 
default, the logistic regression model with varying 
intercept-only is fitted. Whenever there are fewer than 
three studies in an analysis, the procedure automati-
cally switches to the ordinary logistic regression model 
with a constant intercept only. When there are zero 
counts in the data, no ad-hoc continuity correction or 
data imputation is required. In meta-regression, both 
categorical (string variables) and continuous study-
level covariates are permitted. There is no limit on the 
number of covariates allowed but only the interaction 
between the first covariate and the rest is permitted; for 
simplicity. The coefficients from the logistic regression 
models can be challenging to interpret due to the non-
linearity of the logistic function. The model coefficients 
are further processed by employing marginal standard-
ization [50–52] and simulations of the posterior distri-
bution to yield meaningful results.
metapreg can also perform stratified analysis and 

model comparisons; by leaving out the interaction terms 
or one covariate at a time. When there are no covariates 
in the logistic regression model, the I2 statistic by Zhou 
& Dendukuri [53] is also computed and presented along-
side the τ̂ 2 . The statistic accounts appropriately for the 
variability of the within-study variance and the mean-
variance relationship across studies.

To ease exploratory analysis, interpretation and 
communication of the results from the meta-analysis 
are presented in a forest plot. When presenting the 
observed proportions, the Wald, Wilson, Agresti-Coull, 
Jeffreys, or Clopper-Pearson CIs can be computed. In a 
comparative meta-analysis, a forest plot of the study-
specific RR or OR can be requested. In an arm-based 
network meta-analysis, the forest plot presents the sum-
mary proportions relative to a “reference group”. The 
“reference group” is one of the groups; automatically 
assigned by the procedure or explicitly specified by the 
meta-analyst.

The code to reproduce the analyses in the next sec-
tions can be downloaded at https:// github. com/ VNyaga/ 
Metap reg/ blob/ master/ metap reg- artic le- code. do.

One group meta‑analysis
Logistic regression model with constant intercept‑only ‑ CE 
model Assuming that the proportion of events in all the 
studies is the same treats the studies as identical replica-
tions of each other and implies that each πj = π . It follows 
then that

The ML estimator π̂c for π is

(22)nj ∼ bin(π ,Nj)

The derivation of π̂ is shown in the additional support-
ing information. A similar estimate is obtained when 
working with the constant intercept-only logistic regres-
sion model where the binomial parameter is expressed as 
π = eβ0

1−eβ0
.

Retrieving the  study weights A relation exists between 
WLS and ML estimation of the logistic regression model 
parameters which uses the Newton-Raphson algorithm. 
The algorithm repeatedly use WLS, with weights chang-
ing at each iteration. Each step involves a normal approxi-
mation to the log-likelihood based on the current solution 
to find an updated solution by WLS. After convergence, 
the solution barely changes in successive iterations.

The maximized log-likelihood L(π̂) contains all current 
information about the π from all the studies. The relative 
“value” of the information provided by a study is encap-
sulated in its contribution Lj(π̂) to the maximized log-
likelihood as

Let η̂ = log

(
π̂c

1−π̂c

)
 . The information Lj(π̂) is approxi-

mately equivalent to normally distributed ‘working’ 
dependent variable zj with mean η̂ and variance ν2j  [54]

The weights that sum to 1 are then computed as

Inference about  the  population mean To compute the 
Wald CI for π̂c , its asymptotic variance (see derivation in 
the additional supporting information) is

(23)π̂c =
∑J

j=1 nj∑J
j=1Nj

(24)

Lj(π̂c) ∝ nj ∗ log
(
π̂c

)
+ (Nj − nj) ∗ log

(
1− π̂c

)

(25)

zj = η̂ + (1+ eη̂)2

eη̂

(
nj

Nj
− eη̂

1+ eη̂

)

ν2j = (1+ eη̂)2

Nj × eη̂

= 1

Njπ̂c(1− π̂c)

(26)wc
j =

1
ν2j∑J
j=1

1
ν2j

≡ Nj∑J
j=1Nj

(27)var(π̂c) =
π̂c(1− π̂c)∑J

j=1Nj

https://github.com/VNyaga/Metapreg/blob/master/metapreg-article-code.do
https://github.com/VNyaga/Metapreg/blob/master/metapreg-article-code.do
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When π̂c is zero or one, the asymptotic variance is 0 
and the Wald CI degenerates. Since π is assumed to be 
the same in each study, the sum of all “successes” is again 
a binomial variable. Therefore

The Clopper-Pearson 1− α CI for π̂c is [L, U] with L 
and U as the solution to the equations [55]

The coverage of the Clopper-Pearson CI is at least 
1− α . The coverage probabilities of the score CI tend to 
be near the nominal value except for some values of π 
very close to zero or one [56]. The score CI is computed 
as

where z is the α
2
 percentile of the standard normal 

distribution.

Example I ‑ A  systematic review on  the  efficacy of  cold 
coagulation as  a  treatment for  cervical intraepithelial 
neoplasia. In the review, Dolman et al. [57] fitted the IV 
RE model with metan. The estimate of heterogeneity was 
taken from the Mantel-Haenszel model. We have previ-
ously used this dataset to demonstrate metaprop and 
metaprop_one in Nyaga, Arbyn and Aerts [58]. Here, 
we use the dataset to delineate the conceptual differences 
between the constant and varying intercept-only logistic 
regression models.

 

The following code performs the meta-analysis 
using the constant intercept-only logistic regres-
sion model which is equivalent to using the binomial 
distribution. 

(28)
J∑

j=1

nj ∼ bin(π ,

J∑

j=1

Nj)

(29)

p(x ≥
J∑

j=1

nj) =
α

2
and

p(x ≤
J∑

j=1

nj) =
α

2
for x = 0, . . .

J∑

j=1

Nj

(30)
π̂c + z

2
∑J

j=1 Nj
± z

√
π̂c(1− π̂c)+

4
∑J

j=1 Nj
∑J

j=1 Nj

1+ z∑J
j=1 Nj

The option model(hexact) requests for the esti-
mate of the mean from the exact binomial distribution. 
cimethod(exact, wald) requests the 95% Clop-
per-Pearson  (exact) CI for the observed proportions 
and the Wald CI for the population mean, respectively. 
smooth requests  for the expected/fitted/smoothed/
model-based proportions and their corresponding 95% 
Wald CI. gof requests for the model’s AIC and BIC. 
The model structure fitted to the data is 

Several tables are displayed in the results window but 
are not presented here. They contain information on the 
goodness-of-fit criterion, the study-specific and popula-
tion-averaged inferences.

The forest plot from the meta-analysis is presented in 
the left graph in Fig.  1. The gray circles and lines rep-
resent the observed proportions and their 95% CI. The 
black dots and lines represent the fitted proportions and 
their 95% CI. The red diamond represents the popula-
tion mean and its 95% CI. The dark gray boxes represent 
the study weight. The model implies that the propor-
tion of patients cured is the same in each study, hence, 
the model-based estimates (black dots and lines) are the 
same in the seven studies. However, the  95% CI of the 
observed 0.80 [0.56, 0.94] versus the expected 0.96[0.94, 
0.97] proportion in the Rogstad, 1992 study barely 
overlap suggesting that the model fits the data point 
poorly. Furthermore, the non-overlapping  95% CI’s of 
the observed proportions in the largest study Loo-
bucyck & Duncan, 1993 0.97 [0.95, 0.98] and the 
Rogstad, 1992 study 0.80 [0.56, 0.94] suggests that 
the proportion of patients cured might not all be the 
same between the seven studies.

Logistic regression model with  varying intercept‑only ‑ 
RE model We reformulate the distribution as

(31)nj ∼ bin(πj ,Nj)
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Using the beta distribution to model the variation of π 
among the studies is ideal because it describes the distri-
bution of a continuous variable in the interval [0, 1]

To ensure unimodality of the random-effect distribu-
tion and hence the identifiability of π , a and b must be 
≥ 1. The beta distribution is naturally conjugate to the 
binomial distribution. This greatly simplifies the compu-
tations in estimating the model parameter estimates and 
their interpretation since

However,  fitting the beta-binomial model outside the 
Bayesian setting is complex and requires extensive program-
ming. The user-written Stata command betabin fits bino-
mial regression models allowing for beta overdispersion.

It is computationally convenient to employ the logit 
function on the binomial parameter πj and add a 
parameter δj representing the unmeasured or omitted 
study characteristics responsible for the variation of 
π among the studies. This introduces J new nuisance 
parameters that saturate the model. The J parameters 
are reduced to one by treating δj as a random effect and 
assigning a normal distribution to it.

(32)πj ∼ beta(a, b) for a, b > 0

(33)
E(πj) =

a

a+ b

var(πj) =
ab

(a+ b)2(1+ a+ b)

Unlike the beta distribution, the normal distribution is 
non-conjugate to the binomial distribution. This does not 
pose any conceptual problem except that integrating out 
the random effects to obtain the log-likelihood function 
requires numerical approximation.

Retrieving the  study weights The conditional maxi-
mized log likelihood contains all current information 
about β̂0 and δ̂j through η̂j . Following the logic in equa-
tions (25), approximating the jth study contribution to 
the conditional maximized log-likelihood by a normal 
distribution yields

where η̂j = (β̂0 + δ̂j) , δ̂j is the “posterior” (also called the 
empirical Bayes) mean estimate of δj , π̂j = e

η̂j

1+e
η̂j

 and 
n̂j = Njπ̂j . The weights that sum to 1 are then computed 
as

(34)
logit(πj) = ηj = β0 + δj

δj ∼ N (0, τ 2)

(35)

ν2j = (1+ eη̂j )2

Nje
η̂j

= 1

Njπ̂j(1− π̂j)

≡ Nj

n̂j(Nj − n̂j)

Fig. 1 Forest plot from a meta-analysis on the efficacy of cold coagulation using the (CE) binomial and the RE logistic regression. Confidence 
intervals for individual studies are computed using the Clopper-Pearson’s method
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The relation between the wc
j  and wv

j  weights exists. 
When 1

π̂c(1−π̂c)
> 1

π̂j(1−π̂j)
 the study is up-weighted and 

vice-versa.

Inference about the mean Approximate inference for the 
parameter coefficients of the logistic regression model 
is based on large-sample theory. The number of studies 
need not be large for the large-sample approximation to 
be good. A quick convergence of the model is often a reas-
surance that the asymptotic properties of the regression 
coefficient estimates may be applicable. The conditional 
mean is

It represents the mean for a central study with δj = 0 
which may also be interpreted as the median proportion. 
An estimate of the population mean is

Unfortunately, the integration above does not follow 
any standard parametric form and is numerically approx-
imated. The direct approach to obtain the point estimate 
is

where δ̂j is the empirical Bayes mean estimates of δj . The 
simplest and most reliable way to generate the distribu-
tion of π̄pop is by simulating the “posterior” distribution 
of π̂j . The following procedure inspired by Bayesian infer-
ence is applied 

1 Let �̂ and �̂� denote the estimated model param-
eters and their variance-covariance matrix. Create 
S (1000 is sufficient) random simulations of the 
parameters 

(36)

wv
j =

Njπ̂j(1− π̂j)∑J
j=1Njπ̂j(1− π̂j)

≡
n̂j(Nj−N̂j)

Nj

∑J
j=1

n̂j(Nj−N̂j)

Nj

(37)E(πj|δj = 0) = eβ0

1+ eβ0
= π̄cond

(38)
E(πj) = E(logit−1(β0 + δj))

=
∫ ∞

−∞
logit−1(β0 + δj)f (δj , τ

2)dδj

(39)
π̄pop = E(π̂j) = E(logit−1(β̂0 + δ̂j))

=
∑J

j=1 π̂j

J
=

∑J
j=1 logit

−1(β̂0 + δ̂j)

J

(40)�̃ ∼ N (�̂, �̂�)

2 Let δ̃ and �̃δ denote the simulated random effects and 
their variance-covariance matrix. For each study, cre-
ate S random simulations of the random effects using 
their simulated distributions 

3 For each study, compute the simulated proportion π̃j 
by adding its simulated fixed and the random effects, 
and the empirical Bayes mean estimate of  the ran-
dom effects together and then convert to [0, 1] scale 

4 For each set of simulations, compute the population 
mean 

 We generate the distribution of R̂Rj and ÔRj and any 
other functions from the simulated π̂j.

5 Obtain the α/2 and 100− α/2 percentiles from the 
simulated distribution of ˜̄πpop (or other functions of 
π̂j ). In a nutshell, we obtain simulations of regres-
sion coefficients, then generate a “posterior” dis-
tribution of πj and its functions given the observed 
data Z j  and the empirical Bayes estimates of the 
random effects.

Example II ‑ A  systematic review on  the  efficacy of  cold 
coagulation as  a  treatment for  cervical intraepithelial 
neoplasia. We now fit the varying intercept-only logistic 
regression model to the Dolman et al. [57] dataset 

The conditional summary estimate from the model is 

(41)δ̃ ∼ N (0, �̃δ)

(42)π̃ j = logit−1(β̃ + δ̂ + δ̃)

(43)˜̄πpop =
∑J

j=1 π̃ j

J
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 which in the [0, 1] scale is 

The estimate above is the mean proportion in studies 
with a random-effect equal to zero which also represents 
the median proportion. The average proportion over  
the whole population of the seven studies in the meta-
analysis is 

The estimate for τ 2 is 0.49 and the I2 indicates that 
35.04% of the total variation is unexplained. 

The highly significant p-value (0.02) from the LR 
test provides evidence that the model with varying 
intercepts is a better fit to the data. The small difference 
in BIC between this model (35.58) and the model 
with a constant intercept (36.67) indicates that the fit 
to the data from the two models is not very different.

The forest plot from the meta-analysis is presented in 
the right graph in Fig.  1. In all the studies, the model-
based proportions seem consistent with the observed. 
By incorporating the study cure rate in the weights, the 
amount of information contained in the biggest study 
reduces from 74.03% to 58.88% moving the population-
average proportion from 0.97 to 0.93.

In this dataset, the  conditional summary proportion 
and the population-averaged proportion were not far 
apart. In general, the discrepancy between the two sta-
tistics increases with increase in the between-study vari-
ability τ 2.

Comparing independent proportions
Logistic regression model with  varying intercepts 
and  a  constant slope Let ( nj ,Nj ,Z j ) denote a data set 

from study j. The mixed effects (ME) logistic regression 
model for the proportion of events in study j is

where βc represents the change in log odds of “success” 
for a unit increase in a study characteristic Zc . β0 repre-
sents the log odds of “success” when all covariates are set 
to 0. The omission of δj yields the FE logistic regression 
model.

Example III ‑ Incomplete excision of  cervical precancer 
as a predictor of  treatment failure [59] In 2017, Arbyn 
et  al. [59] published a systematic review assessing the 
risk of therapeutic failure associated with the histologi-
cal status of the margins of the tissue excised to treat cer-
vical precancer (CIN2+). They assessed the influence of 
the excision procedure (cold-kife conisation (CKC), laser 
conisation (LC), large loop excision of the transformation 
zone (LLETZ), or mixed) on the margin status. They per-
formed a stratified analysis by treatment procedure with 
metaprop. Their results are in column three of Table 2.

After computing the different summary proportions, 
metaprop conducts a test of equality of those propor-
tions. This test is merely an indication of the degree of 
evidence of no differences between the proportions but 
gives no information on the nature and the strength of 
the differences. This information can be obtained from 
the ratios of the proportions. The test statistics were 
(chi = 6.99, d.f = 3, p-value = 0.07) indicating no differ-
ences in the pooled proportions by treatment. In a ran-
dom-effects model, the test may be biased. Two possible 
sources of bias are 

1 The inefficiency of the MOM in estimating the 
between-study variance which is required in comput-
ing the weights and consequently the variances of the 
overall and the sub-group proportions.

2 In calculating the heterogeneity statistic, the sub-
group pooled estimates are treated as though they 
are fixed-effects estimates while they are random-
effects estimates.

To formally compare the differences between the treat-
ment groups, we fit a ME logistic regression model with 
treatment as a covariate 

(44)

nj ∼ bin(πj ,Nj)

logit(πj) = Z jβ
′
j + δj

δj ∼ N (0, τ 2) for j = 1, . . . , J
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The option sumtable(abs rr) requests for the 
estimated positivity ratios (rr) alongside the estimated 
proportion (abs) of positive margins. A representation 
of the requested model is 

Other outputs displayed in the results window 
include a representation of the mean function of the 
reduced model fitted for model comparison, study-spe-
cific inferences, conditional and population-averaged 
inferences. The estimated population-averaged pro-
portions are presented in column five of Table  2 and 
in the left graph of Fig.  2. The output below indicates 

that large loop excision was associated with 42% higher 
positive margins than cold knife conisation (RR = 1.42, 
95% CI[1.05, 1.93]). 

However, looking at the output below comparing all 
the three ratios indicates that there are no significant dif-
ferences between them. 

The ratios presented earlier apply to studies 
where the random effect is zero. By looking at the 

Table 2 Summaries from meta-analysis on efficacy of cold coagulation as a treatment for cervical intraepithelial neoplasi as perfomed 
by metaprop and metapreg 

Treatment Studies metaprop metapreg (stratified RE 
model)

metapreg (ME meta‑
regression)

metapreg (FE meta‑
regression)

cold-knife conisation (CKC) 17 20.17%, 95% CI[14.34, 
26.71]

21.60%, 95% CI[13.44, 
31.48]

21.56%, 95% CI[13.01, 
25.22]

14.87%, 95% CI[14.25, 
15.52]

τ 2 = 0.10 τ 2 = 0.66

I2 = 98.35% I2 = 94.91%

laser conisation (LC) 13 17.76%, 95% CI[12.93, 
23.17]

18.85%, 95% CI[11.46, 
29.02]

18.54%, 95% CI[16.68, 
37.29]

17.57%, 95% CI[16.59, 
18.64]

τ 2 = 0.05 τ 2 = 0.49

I2 = 95.35% I2 = 89.94%

large loop excision 
of the transformation zone 
(LLETZ)

42 25.89%, 95% CI[22.32, 
29.62]

26.79%, 95% CI[21.77, - 
32.28]

26.77%, 95% CI[20.79, 
33.82]

29.84%, 95% CI[29.07, 
30.63]

τ 2 = 0.07 τ 2 = 0.43

I2 = 95.76% I2 = 91.11%

Mixed 22 23.72%, 95% CI[18.90, 
28.89]

25.34%, 95% CI[17.00, 
36.43]

25.26%, 95% CI[17.34, 
31.33]

24.97%, 95% CI[24.07, 
25.76]

τ 2 = 0.07 τ 2 = 0.99

I2 = 96.68% I2 = 95.55%

All 94 23.13%, 95% CI[20.45, 
25.92]

24.29%, 95% CI[20.76, 
28.83]

24.34%, 95% CI[20.75, 
29.53]

24.30%, 95% CI[23.84, 
24.74]

τ 2 = 0.10, τ 2 = 0.65 τ 2 = 0.64 BIC = 3301.50

I2 = 97.63% I2 = 93.67% BIC = 939.52
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population-averaged estimates, there is no difference 
between large loop excision and cold knife conisation. 

With a reduction of 7.33, the BIC indicates that the model 
without the covariate is more parsimonious. The p-value 
conveys the same information differently; that there no sig-
nificant differences between the treatment groups. 

To assess the adequacy of the model, we also fitted the FE 
logistic meta-regression. The estimated population-averaged 
proportions are presented in column six of Table 2 and the 
right graph in Fig. 2. For comparison with the original analy-
sis, we also performed stratified meta-analysis and fitted a 
RE logistic regression model for each treatment group.

In Table  2, the estimates for τ̂ 2 from metaprop and 
metapreg in columns three and four should not be 

compared because they have different scales. However, 
the estimates for I2 can be compared. Their differences 
are explained as follows. metaprop computes the I2 
statistic by Higgins and Thompson [60] which has been 
shown to lead to an incorrect conclusion of very high 
heterogeneity [53]. metapreg computes the I2 statistic 
by Zhou and Dendukuri [53] which is more suitable for 
binomial-normal data. metaprop yields a larger esti-
mate of the between-study variability in the CKC group 
(τ 2 = 0.10) than in the mixed group (τ 2 = 0.07) while 
a visual inspection of Fig.  2 suggests the opposite. In 
contrast, the estimates from metapreg (τ 2 = 0.66 vs 
τ 2 = 0.99) are congruent with the observed variability 
in the forest plots (see Fig. 2); more heterogeneity in the 
mixed group. This discrepancy points to the statistical 
sub-optimality of the MOM in estimating the between-
study variability [61].

The estimated population-averaged proportions 
from the stratified RE logistic regression and the ME 
logistic meta-regression models in the fourth and 
fifth columns are not far apart. The estimated pop-
ulation-averaged proportions from the ME logistic 
meta-regression and the FE logistic meta-regression 
models in the fifth and sixth columns have some 
discrepancies. The leave-one-out LR test from the 
FE model (p-value < 0.01) indicates differences by 
treatment while the RE model (p-value = 0.10) indi-
cates no difference. With the lower BIC, the ME 
logistic meta-regression model is more parsimoni-
ous than the FE logistic meta-regression. However, 

Fig. 2 Forest plot from a meta-analysis on the incomplete excision of cervical precancer by treatment procedure (CKC - cold knife conisation, LC 
- laser conisation, LLETZ - large loop excision of the transformation zone) using the ME and FE logistic regression
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the discrepancies in the results from the FE and ME 
suggests that the random effects may be concealing a 
serious model inadequacy possibly due to omission of 
important covariates.

Comparing two dependent proportions
Let ([nj1,Nj1], [nj2,Nj2]) denote the paired responses 
from study j. Let T1 = 0 in the control group and T2 = 1 
in the treatment group. The relative response rate is 
RRj = nj1∗Nj2

Nj1∗nj2 . The asymptotic score CI for RRj are com-
puted via the Koopman [62] method which relies on an 
iterative likelihood optimization.

Logistic regression model with fixed intercepts and a con‑
stant slope ‑ a common OR model Under the hypothesis 
that all studies have the same treatment effect and pro-
duce independent estimates of the common effect, we can 
estimate a summary measure of the conditional associa-
tion. For group k from study j, we model the proportion of 
positive responses as

where θ is the common log odds ratio, β0 is the log odds 
of a positive responses in the control group of the base-
line study (the first study in the data set), and δj repre-
sents the log odds of a positive responses in the control 
group if study j relative to the baseline study. It follows 
then that πj1 is the baseline risk in study j and eθ is the 
common odds ratio. In a study j, the odds of positive 
response in the treatment group are eθ times the odds 
in the control group. When θ = 0 , the proportions of 
positive responses are the same in the pair and there is 
no treatment effect. This model has as many parameters 
as the number of studies. Models with less parameters 
are preferred because yield more precise estimates [63]. 
Before describing models with less parameters, we fit the 
model to an example data set.

Example V ‑ Intravenous magnesium for  acute myo‑
cardial infarction [64] Due to conflicting evidence 
from earlier meta-analyses and large trials, Li et  al. 
[64] conducted a review to clarify further the effect of 
magnesium (versus control) on early mortality. Using 
the Review Manager, they fitted the CE linear model 
and the RE linear model to the log odds ratio. The CE 
linear model showed no effect (overall OR = 0.99, 95% 
CI[0.94, 1.04]) while the RE linear model showed a sig-

(45)

njk ∼ bin(πjk ,Njk)

logit(πjk) = β0 + θTk + δj

for j = 1, . . . , J

and k = 1, 2.

nificant effect (overall OR = 0.66, 95% CI[0.53, 0.82]). 
In an attempt to explain the variation in the treatment 
effects among the studies, they performed subgroup 
meta-analyses by time since the onset of symptoms (< 
6 hours, 6+ hours), use of thrombolysis, and dosage (< 
75 mmol, 75+ mmol). They concluded that the effect 
of treatment with low dose (< 75 mmol) and use of 
thrombolysis treatment on the effect of magnesium on 
mortality was uncertain. Based on the inference from 
the CE linear model, they discouraged the use of intra-
venous magnesium. Doi et  al. [1] used this dataset to 
demonstrate why the IVhet linear model should replace 
the CE and RE linear model.

We begin by reproducing the meta-analyses with 
metan

Replacing the option model(fe) with model(re) 
and model(ivhet) in the syntax above fits the RE and 
IVhet linear models, respectively.

The forest plots of the odds ratio of death from the 
meta-analyses using the CE and RE linear models are 
presented in Fig.  3. The overall OR from the CE and 
RE linear models were 0.99  (95% CI[0.94, 1.05]) and 
0.79 (95% CI[0.68, 0.92]) respectively. As expected, the 
estimates from the IVhet model are identical to the CE 
model but with wider CIs (0.99, 95% CI[0.79, 1.24]). 
The overall OR in Doi et al. [1] from the IVhet and the 
RE models were 1.01(95% CI[0.71, 1.46]) and 0.71 (95% 
CI[0.57, 0.89]) respectively. Their results differ from 
ours in two ways. First, they combined the stratified 
data from the ISIS-4. Secondly, they excluded three 
studies from their analysis (two with zero cells). The 
naive SE from the CE linear model and the corrected/
robust SE from the IVhet linear model were 0.025 and 
0.11, respectively. Generally, a substantial difference 
between the naive and corrected SEs, as is in this case, 
calls for more attention in modeling of the mean and 
correlation structure.

Li et al. [64] argued that neither the CE nor the RE lin-
ear model analysis were appropriate and that a Bayes-
ian perspective could help reconcile the discordant 
ISIS-4 findings from the other trials. Model parameters 
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estimated in the Bayesian and the frequentist perspective 
will not differ unless informative priors are used. Using 
metapreg, we will show that the results are different 
because the model assumptions are different. The code to 
fit the constant-baseline logistic regression model is 

The fitted model has group and study as covariates 

The estimated common log OR (-0.01, 95% CI [-.07, 
0.04]), population-averaged OR (0.99, 95% CI [0.93, 1.04]), 
population-averaged RR (0.99, 95% CI [0.94, 1.04]) and the 
LR statistic (chi2 = 0.23, p-value = 0.63) for H0 : group 
effect = 0 all indicate no treatment effect. 

The estimated population-averaged RR is similar to 
the OR estimates from metan’s and the original CE 
models. When the event rate is rare (< 10%), as is for 
many studies in this data set, ORs and RRs are very 
similar. Generally, the OR exaggerates the effect size 
but when there is no treatment effect, both OR and RR 
are equal to 1. In the syntax, the option outplot(rr) 
requested for a forest plot of the probability ratios. 
Changing the option to outplot(or) would display 
of the odds ratios instead. The forest plots of the rela-
tive risk of death and the relative odds of death are pre-
sented in left and right graph of Fig. 4.

Logistic regression model with random intercepts and a con‑
stant slope ‑ a common OR model Since the main objec-
tive is to make valid and efficient inference about the aver-
age treatment effect over the population of studies and not 
about the incidental estimates of the baseline log odds, it 
makes sense to simplify model (45) by treating the base-
line parameters δ as normally distributed random effects 

Fig. 3 Forest plot of odds ratios of death from a meta-analysis on the intravenous magnesium for acute myocardial infarction using the stratified CE 
inverse-variance model and RE inverse-variance model with metan 
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with mean baseline log odds µδ and variance τ 2δ  . With 
three parameters, the model is more manageable and can 
also be easily extended to incorporate study-level covari-
ates Z j - possible sources of heterogeneity. The ME logistic 
regression model comparing the proportions of positive 
responses in the two groups is expressed as

The shared random effect between the paired responses 
guarantees the within-study comparison between the 
treatments. As τ 2δ → 0 the baseline risks become more 
homogeneous. A large τ 2δ  indicates high heterogeneity in 
baseline risks between studies and a strong association 
between the paired responses. 

The fitted model is 

(46)

njk ∼ bin(πjk ,Njk)

logit(πjk) = θTk + Zjβ
′ + δj

δj ∼ N (µδ , τ
2
δ )

for j = 1, . . . , J

and k = 1, 2.

The unexplained variation of the baseline risks is esti-
mated at τ̂ 2δ  = 0.22. The reported LR test shows that the 
variability between the baseline risks is significant. 

The estimated conditional and population-averaged 
OR, and RR are all 0.99, 95% CI [0.94, 1.04], like from the 
previous FE logistic regression.

The forest plot of the relative risk and odds ratio of 
death are presented in the left and right graph of Fig. 5. 
Comparing the weights displayed in Figs.  3, 4, and 5, 
the relatively large studies are down-weighted by the 
DL RE method much more than by the logistic meta-
regression implicit weighting scheme. In Figs. 4 and 5, 
the 95% CIs of the observed RRs and ORs in Santoro 
2000 and Urek 1996 represented by gray lines are 
missing because they are undefined in the log scale. 
Nonetheless, the study data is still used in the meta-
regression without the continuity correction carried 
out by metan.

Fig. 4 Forest plots of relative risk and odds of death from a meta-analysis on the intravenous magnesium for acute myocardial infarction using 
a fixed-effects logistic regression model with fixed intercepts and a constant slope
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The saturated logistic regression model ‑ fixed intercept 
and  fixed slope There are two indications in Figs.  4 
and 5 that the models are a poor summary of the data. 
First, we observe that the model-based treatment 
effects are systematically larger than observed effect in 
most studies. Secondly, the CIs of the observed RR and 
the model-based RR (or OR) do not overlap in six stud-
ies. The inference from previous FE and the current ME 
logistic regression models are based on the assumption 
of identical odds ratio between the studies. If the treat-
ment effects vary, there will be more variation in the 
data than explained by either model - presence of over-
dispersion. Furthermore, it can lead to practical prob-
lems by creating false inferences about the treatment 
effect. It is therefore, essential to know if the data sup-
ports the assumption of homogeneous log odds ratio. 
To test the hypothesis of equal odds ratio, we need 
to test whether the 22(J − 1 ) parameters in the satu-
rated model that are coefficients of interaction terms 
between study and group all equal 0.

We fit the saturated model to the myocardial infarction 
[64] data set as follows 

The options nograph and noitable suppress the 
forest plot and the table output. The fitted model now 
includes the interaction terms study*group

The LR test statistic for H0 : all study*group = 
0 (chi2 = 68.68, p-value = 0.00) does not support the 
hypothesis of equal odds ratios. 

Logistic regression model with  varying intercepts and 
varying slopes To allow for varying log odds ratio by 
study, we introduce J new parameters θj representing 
the study log odds ratio - normally distributed random 
effects with mean log odds ratio µθ and variance σ 2

θ  .  
In study j, the proportion of events in group k is  
modelled as

Fig. 5 Forest plots of relative risk and odds of death from a meta-analysis on the intravenous magnesium for acute myocardial infarction using 
a mixed-effects logistic regression model with varying intercepts and a constant slope
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When σ 2
θ  is close to zero, all studies have the same 

treatment effect and same standard error. The total 
between-study variation is (τ 2δ + σ 2

θ ) . The proportions of 
the variability accounted for by differences in the baseline 
risks and treatment effects are computed as I2δ = τ 2δ

(τ 2δ +σ 2
θ )

 

and I2θ = σ 2
θ

(τ 2δ +σ 2
θ )

 , respectively.
The code to fit this model to the myocardial infarction 

[64] data set is 

The option cov(independent) indicates that the 
two random effects in the model are independent. The 
fitted model is 

The population-averaged OR and RR are 0.69 (95% CI 
[0.53, 0.89]) and 0.70  (95% CI [0.56, 0.89]), respectively. 
Both statistics are similar to the estimate from the origi-
nal RE linear model. 72.29%(I2tau) of the unexplained 
between-study variation is due to differences in the 
underlying risk of patients and 27.71%(I2sigma) is due 
to differences in treatment effects. 

The forest plots of the absolute and relative risk of 
death are presented in the left and right graph of Fig. 6. 
Some of the 95% CIs of the observed RRs and their 

(47)

njk ∼ bin(πjk ,Njk)

logit(πjk) = θj + Zjβ
′ + δj

δj ∼ N (µδ , τ
2
δ )

θj ∼ N (µθ , σ
2
θ )

for j = 1, . . . , J

and k = 1, 2.

expected estimates do not overlap indicating that the 
model fits those data points poorly.

Logistic regression model with  correlated intercept 
and slope Often, the mean structure is of primary inter-
est and not the covariance structure. Nonetheless, an 
inappropriate covariance structure may lead to incorrect 
interpretation of the variation in the data and invalidate 
inference for the mean structure.

To investigate whether the treatment benefit is related 
to the underlying risk of the patients in the different stud-
ies, we allow a correlation between the baseline risks and 
the treatment effect in model (47) so that

The code to fit model (47) with correlated baseline and 
treatment effects to the myocardial infarction [64] data set is 

The population-averaged OR and RR are 0.60 (95% CI 
[0.43, 0.84]) and 0.62 (95% CI [0.46, 0.85]), respectively, 
indicating a treatment effect. The estimated standard 
deviation of the baseline log odds is τ̂δ = 0.52 , account-
ing for 72.77% of the total unexplained between-study 
variation. The estimated standard deviation of the log 
OR is σ̂θ = 0.20 for the remaining between-study vari-
ation. The estimated correlation between the baseline 
risks and the treatment effect is ρ̂ = −0.77 implying 
that studies with low baseline risks had a larger treat-
ment effect size and vice-versa. The forest plots of the 
absolute and relative risk of death are presented in the 
left and right graph of Fig. 7.

Model checking To place more confidence that a chosen 
model structure is close to the optimal model, we study 
the patterns in the observed RRs and compare them with 
the model-based estimates. The BIC reduces from 324.26 
to 322.53 indicating a slight improvement to the fit. The 
model-based RRs represented by the solid dot and lines and 
the observed RRs represented by the gray dots and lines are 
more consistent in the unstructured covariance (see Fig. 6) 
than in the independence covariance (see Fig. 7). Nonethe-
less, the CIs of the observed and overall RRs from ISIS-4 
and MAGIC studies do not overlap. A formal method for 

(48)
(
δj
θj

)
∼

[
τ 2δ ρ

ρ σ 2
θ

]
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dealing with isolated discrepancies include adding dummy 
variable taking the value one for the discrepant study and 
zero elsewhere [65] and conducting an LR test to examine 
the effect of the discrepant studies on the fit. The addition 
of the dummy variable has an effect on the fit equivalent to 
removing the discrepant study from the data set. 

We re-fit the previous model with correlated baseline 
and treatment effects, and include discrepant as a 
potential effect modifier 

The re-fitted model is 

The variation in the treatment group (sigma2) disap-
pears and the unexplained variation of the baseline risks 
is estimated at τ̂ 2δ  = 0.23. 

Therefore, we can drop the unnecessary param-
eters ρ and σ 2

θ  from the model by removing the option 
cov(unstructured) in design(comparative, 
cov(unstructured))

Fig. 6 Forest plots of absolute and relative risk of death from a meta-analysis on the intravenous magnesium for acute myocardial infarction using 
a mixed-effects logistic regression model with varying intercepts and varying slopes
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The re-fitted model is 

The unexplained variation of the baseline risks is 
estimated at τ̂ 2δ  = 0.19. The estimated proportion of 
responses in the control group of the larger and smaller 
trials are not different (Yes|c = 0.10 [0.05, 0.19] vs No|c 
= 0.09 [0.07, 0.13]). However, the estimated proportion 
of responses in the treatment group was double (Yes|t = 
0.10 [0.05, 0.20] vs No|t = 0.05 [0.04, 0.08])

The forest plots of the absolute and relative risk of 
death are presented in the left and right graph of Fig. 8. 
The population-averaged OR and RR in the larger 
and smaller trials were 1.05  (95% CI [0.99, 1.11]) and 
0.59 (95% CI [0.49, 0.70]), and 1.04 (95% CI [0.99, 1.10]) 
and 0.61 (95% CI [0.52, 0.71]), respectively. The results 
would barely change if we re-fitted the equivalent FE 
logistic regression model. metapreg cannot fit this 
model but it can be fitted directly into Stata. To do this, 
we first turn the string variables into factor variables 

We then create two dummy variables; exception 
taking the value one in the discrepant studies and zero 
elsewhere, and rest taking the value zero in the discrep-
ant studies and one elsewhere, and a constant x taking 
the value one in all studies. 

The code to fit the FE logistic regression model with 
constant baseline and common OR varying by dis-
crepant group is 

Fig. 7 Forest plots of absolute and relative risk of death from a meta-analysis on the intravenous magnesium for acute myocardial infarction using 
a mixed-effects logistic regression model with correlated intercepts and slopes
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The conditional OR in the discrepant studies and the 
rest are 1.05 (95% CI [0.99, 1.11]) and 0.59 (95% CI [0.49, 
0.68]), respectively. 

The corresponding RR estimates are 1.04 (95% CI [0.99, 
1.10]) and 0.60 (95% CI [0.51, 0.70]), respectively. These 
are obtained as follows 

The results from the FE and ME do not differ. How-
ever, their BICs differ; their values are 304.29 and 299.99, 
respectively, indicating that the ME parameterisation is 
parsimonious. Looking at the goodness-of-fit statistic 
BIC in Table 3, the last ME model provides the best fit. 
In Fig. 8, the model-based estimates are more consistent 
with the observed proportions in all studies.

Since the weights are proportional to the study size, it 
makes sense to treat the model as a finite mixture model 
with a the fixed number of mixture components (equal to 
the number of studies) and the study weights as the mix-
ing weights. Combining ideas from finite mixture mod-
eling and K-means cluster analysis, we can interpret the 

Fig. 8 Forest plots of absolute and relative risk of death from a meta-analysis on the intravenous magnesium for acute myocardial infarction using 
a mixed-effects logistic regression model with varying intercepts and varying slopes
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working model as a segmentation of the population into 
two clusters such that within each cluster, the model-
based log odds ratio are identical in each sub-population. 
There are two sub-populations; one showing substantial 
benefit and one without. 89.32% of the patients did not 
benefit from the treatment and only 10.68% of patients 
benefited. The results raise the question whether this 
clustering can be explained by known covariates. The 
common factors between ISIS-4 and MAGIC is treat-
ment with high dose of magnesium (75+ mmol) and use 
of thrombolysis [64].

Since the data does not support the hypothesis of 
homogeneous treatment effects, making a single rec-
ommendation for the whole population based on the 
population-averaged estimate is inappropriate and 
misleading. It is also uninformative because the condi-
tional effects are masked by the average effect over the 
whole population. Evidence from larger trials is widely 
believed to be more consistent with the to-be-expected 
true effect than the effects from smaller trials [66]. 
However, as the study size increases, so dose the poten-
tial presence of interactions (effect modifiers). If an 
interaction exist, the treatment effect in a specific sub-
population will not generalize to the entire population. 
Therefore, the evidence from smaller trial should not be 
ignored.

Example IV ‑ Effect of  latitude on  the  protective effect 
of BCG vaccination against Tuberculosis [21] Using the 
Stata command metareg [67], Sharp and Sterne [21] 
investigated the effect of absolute latitude (degrees north 
or south from the Equator) on the effectiveness of BCG 
vaccination. A WLS linear meta-regression model was 
fitted on the log odds ratios with latitude as a covariate. 
The analysis showed a significant negative association 
between the log odds ratio and the absolute latitude and 
the authors concluded that the benefit of BCG vaccina-

tion was greater in higher latitude. The dataset is also used 
in Stata to demonstrate using meta regress [12] to 
regress the log risk ratios against the mean-centered lati-
tude.

We now fit an ME logistic meta-regression model 
with bcg; a categorical variable for the treatment group, 
and lat; a continuous variable with information on the 
absolute latitude. To allow the effects of BCG to vary by 
latitude, we also include the interaction between the 
two variables. 

The option design(comparative) informs the 
procedure that the data is from a comparative study. It is 
therefore possible to generate a forest plot of the relative 
risks. The options outplot(rr) and sortby(lat) 
instruct the procedure to generate the forest plot (see 
Fig.  3) with the observed relative risks of TB sorted by 
lat analogous to the forest plot of the log odds ratio in 
Fig. 2 in Sharp and Sterne [21]. The fitted model is 

The coefficient for the interaction term lat*bcg is 
-0.03334 (95% CI  [-0.0388, -0.02488]). This is compara-
ble to the coefficient for lat -0.0320 (95% CI  [ -0.0417, 
-0.0223]) when regressed against the log odds ratio of 
BCG vaccination reported by Sharp and Sterne [21]. The 
population-averaged relative risk of TB is 0.55  (95% CI 
[0.51, 0.60]) indicating a strong effectiveness of BCG vac-
cination against tuberculosis.

The significant p-values in the table below indicate that 
all the three terms (bcg + lat + lat*bcg) and especially the 
interaction term lat*bcg were important in explaining 
the variation in the risks. 

Table 3 Comparison of fixed and mixed effects models

Model Type BIC

Constant baseline & common slope FE 343.12

Varying baseline & common slope ME 337. 13

Constant baseline & varying slope FE with interaction 358.67

Uncorrelated baseline & slope ME 324.26

Correlated baseline & slope ME 322.53

Correlated baseline & slope ME with interaction 309.60

Varying baseline & common slope ME with interaction 299.99

Varying baseline & common slope FE with interaction 304.29
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The large estimate of the between-study variance in the 
table below suggests omission of an important covariate. 

In the forest plots presented in Fig.  9, the observed 
relative risks are sorted by the absolute latitude reveal-
ing a linear trend; the expected relative risk of TB 
decreases as the absolute latitude increases. The plot 
also reveals possible outlying studies. The observed and 
the expected risk ratios in the Vandiviere et al 
1973 and the Aronso et al 1958 studies are 
very different indicating that the model is a poor fit for 
the two studies possibly due to omission of a relevant 
covariate.

Comparing multiple dependent proportions I ‑ 
Contrast‑based network meta‑analysis
Logistic regression model with varying intercepts and con‑
stant slopes Suppose each study compares at least one of 
L candidate treatments (case groups) against a compara-
tor treatment (control group). The interest of the meta-
analysis is to assess differences between the candidate 
treatments and estimate the average relative effectiveness 
of the candidate treatments relative to the comparator.

Let (aj , bj , cj , dj) denote a set of case-control data from 
study j as defined in Table 4. Suppose in study j there are 
Lj case groups compared to the control group, then, there 
will be Lj tabulations as Table 4. In the dataset, this infor-
mation is stored in Lj rows with each row containing data 
from each table. From the four cells, we obtain two mar-
ginal distributions

(49)

nj1 = (aj + bj),

nj2 = (aj + cj),

Nj = (aj + bj + cj + dj),

nj1 ∼ bin(πj1,Nj) and

nj2 ∼ bin(πj2,Nj).

Fig. 9 Forest plot of relative risks from a meta-analysis on the protective effect of BCG against tuberculosis using the ME logistic regression

Table 4 Cross-tabulation of successes in the case and control 
group

Case Control

1 (Success) 0 (Failure)

1 (Success) aj bj

0 (Failure) cj dj
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When a study has data on the four cells, we refer to 
it as a “matched” study. In many studies, only the mar-
ginal data (nj1, nj2,Nj) is available. We refer to such data 
as “paired”. The terms matched and paired are often used 
in synonymous, but we will use them to differentiate the 
two data structures.

Let Tk be an indicator variable to distinguish the case 
group from the control group. We assign T1 = 1 in the 
case group and T2 = 0 in the control group. Let Fl be 
an indicator variable to distinguish the case groups. We 
assign Fl = 0 in the first case group and Fl = 1 in the 
lth case group l = (2, . . . , L) . We propose the following 
model to summarize the data

θ is the average log odds of “success” in the L case groups 
compared to the control group and � = (�1, . . . , �L) are 
the case group effects. In study j, the odds of success in 
the lth case group are e�l times the odds in the 1st case 
group because

When θ is zero, the success probability in the case and 
control groups are similar and when all �l are zero the 
success probabilities between the case groups are similar.

In a forest plot, the study RR is computed as 
RRj = aj+bj

aj+cj
= nj1

nj2
 . The CIs are computed based on the 

score statistic [68] with constrained ML. When only the 
marginal summaries are available i.e. ‘paired’ data, the 
Koopman [62] CI’s for two independent samples are 
computed. These intervals are expected to be wider 
than the former because the intrinsic correlation in the 
pair is ignored.

Example VI ‑ Which other hrHPV tests fulfil criteria 
for use in primary cervical cancer screening? [69] To be 
eligible for use in cervical cancer screening, a candidate 
hrHPV DNA assay must fulfil three Meijer [70] criteria 

(50)

njkl ∼ bin(πjkl ,Njkl)

logit(πjkl) = θTk + �lFl + Zjβ
′ + δj

δj ∼ N (0, τ 2)

for

k = 1, 2,

l = 1, . . . , L,

j = 1, . . . , J .

(51)

πj1l(Zj) =
e(θ+�l+Zjβ

′+δj)

1+ e(θ+�l+Zjβ
′+δj)

and

πj11(Zj) =
e(θ+Zjβ

′+δj)

1+ e(θ+Zjβ
′+δj)

one of which is, it should demonstrate a relative sensitivity 
to detect CIN2+ compared to HC2 or GP5+/6+ PCR-EIA 
of ≥0.90. In 2015, Arbyn et al. [69] conducted a systematic 
review to verify which HPV tests fulfilled the three Meijer 
criteria.

We focus on Table  2 in Arbyn et  al. [69] The dataset 
included 12 studies; GP5+/6+ PCR-EIA and HC2 was 
the comparator in three and nine studies, respectively. 
Figure 10 shows a network of all the comparisons present 
in the data. The network plot was generated with the fol-
lowing code 

We now perform a contrast-based network meta-anal-
ysis via an ME logistic meta-regression model to verify 
that there are no differences in relative sensitivity among 
the new tests and the standard comparators. 

The fitted model structure is 

The statistics in the table below indicate that there are 
no differences in relative sensitivity among the new index 
tests and the standard comparators. 
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For model comparison, we also fitted the correspond-
ing FE logistic meta-regression model (The code is not 
presented here). The BICs from the FE and ME models 
were 125.27 and 127.77 indicating that the models pro-
vide similar fits to the data. The p-value (0.21) from the 
LR test comparing the ME and FE indicates that the 
detected between-study heterogeneity τ̂ 2 is not signifi-
cantly different from zero. 

The forest plots from the FE and RE models presented 
Fig. 11 are virtually identical, as expected.

Comparing multiple dependent proportions II ‑ Arm‑based 
network meta‑analysis
Logistic regression model with varying intercepts and var‑
ying slopes Suppose, there are K treatments in total but 
only Kj are evaluated in study j while the other K − Kj 
treatments are assumed to be missing at random and 
interest is in summarizing the data from all the K different 
treatments coherently.

Let ([nj1,Nj1], . . . [njKj ,NjKj ],Z j) denote the data from 
study j. This data is stored in Kj rows with each row con-
taining data from each treatment. We propose to model 
the K “success probabilities” as follows

where µk is the log-odds of ‘success’ of the kth treatment, 
(δj) is a study effect, and (ϑjk) is a treatment effect nested 
within a study. The imposed random-effects structure 
induces a positive correlation between responses from 
the same study (δj) and another between studies evaluat-
ing the same treatment (ϑjk) resulting in a compound 
symmetry variance-covariance structure between the 
responses. The ICC; the correlation between any two 
proportions, is ρδ = τ 2δ

τ 2δ +τ 2ϑ
 . The ICC also measures the 

proportion of the variability accounted for by the 
between-study variability. It is ρδ = 0 when the study 
effects convey no information and close to 1 the more 
identical the studies are.

To fit model 52, there should be at least 2 treatments per 
study for the model to be able to separate the two variance 

(52)

njk ∼ bin(πjk ,Njk)

logit(πjk) = µk + Zjβ
′ + ϑjk + δj

δj ∼ N (0, τ 2δ )

ϑjk ∼ N (0, τ 2ϑk )

Fig. 10 Network of eligible comparisons for the network meta-analysis of sensitivity of hrHPV DNA assays for use in primary cervical cancer 
screening
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components. The specification of model 52 assumes homo-
geneous (equal) variance τ 2ϑ between the treatments. A 
more flexible model allows the variances to differ by treat-
ment i.e τ 2ϑ = τ 2ϑ1, . . . , τ

2
ϑK however this requires more data 

to identify the extra K-1 variance parameters. The model is 
analogous to the model by Nyaga, Arbyn and Aerts [71] for 
network meta-analysis of diagnostic accuracy studies.

The advantages of an arm-based network meta-analysis 
are potential gain in precision through the complex correla-
tion structure, coherent inference, the possibility to combine 
direct and indirect evidence, and obtain any conceivable 
contrasts even when such contrasts do not exist from the 
head-to-head comparisons. Furthermore, it avoids the 
inflation of type I errors (multiplicity) introduced by per-
forming a series of head-to-head comparisons [72].

Example VII ‑ Comparative efficacy of antimanic drugs 
in acute mania [73] In 2011, Cipriani et al. [73] system-
atically reviewed 47 randomised controlled trials that 
compared the proportions of patients who responded to 
13 treatments of acute mania in adults. The treatments 
included placebo (PLA), aripiprazole (ARI), asenapine 
(ASE), carbamazepine (CARB), valproate (VAL), halo-
peridol (HAL), lamotrigine (LAM), lithium (LITH), 
olanzapine (OLA), quetiapine (QUE), risperidone (RIS), 
topiramate (TOP), and ziprasidone (ZIP). Figure  12 
(right) displays a network of all the comparisons in the 
data. From Table  5, the number of studies evaluating 
each treatment varied and TOP, LAM, and ASE were 
assessed only once. Their analysis used the Dersimonian-

Laird [13] model to obtain direct evidence on the sum-
mary ORs from head-to-head comparisons of the anti-
manic drugs relative to placebo in Stata. They reported 
that all antimanic drugs were significantly more effec-
tive than the placebo except TOP. They then performed 
a network meta-analysis in Winbugs to obtain mixed 
evidence (combining direct and indirect evidence) on 
the summary ORs of the antimanic drugs relative to the 
placebo. They reported that ASE, ZIP, LAM, and TOP 
were not significantly more effective than the placebo. 
They reported further that the wide CIs from the net-
work meta-analysis made it difficult to draw clear con-
clusions. In 2013, Chaimani et al. [74] used the dataset to 
demonstrate the use of mvmeta [11] for contrast-based 
network meta-analysis in Stata.

We will now demonstrate the arm-based network 
meta-analysis using metapreg. First, we obtain the 
response rates by fitting a seperate RE logistic regression 
model for each treatment. 

Fig. 11 Forest plot of relative sensitivity of hrHPV DNA assays relative to HC2 or GP5+/6+ PCR-EIA from contrast-based network meta-analysis using 
the FE and ME logistic regression model
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The two options stratify and by(drug) together 
enable us to fit separate models for each treatment group 
and consolidate the results in one graph and table. In 
contrast, the prefix by drug: would generate separate 
graphs and tables.

The heterogeneity statistics are presented in Table  5. 
The highest between-study variation was observed among 
studies that evaluated OLA and RIS. Some of the cells 

in the table for TOP, LAM, and ASE are empty because 
whenever there are less than three studies, the metapreg 
fits the CE model. Consequently, the automatic LR test 
comparing the RE model with the CE is not conducted. 
Further, the between-study variance and the I2 are 
also absent. The forest plot presented in the left graph 
of Fig. 11 suggests that TOP was less effective than the 
placebo, LAM and ASE were similar to the placebo. At 
the same time, the other treatments were better than the 
placebo.

Since all studies except one included the placebo, we 
will perform a series of head-to-head active treatment 
vs. placebo comparative analyses to quantify the relative 
response rates. Before we fit the models, we need to put 
the data into the right shape for comparative analysis. 
This is necessary because some studies evaluated three 
treatments (and thus contribute three rows of data) while 
comparative analysis as performed with metapreg 
expects two rows per study. The code to reshape the data 
is not presented here. The right graph in Fig. 12 displays 
the network of treatments compared with the placebo. 
The network plot was generated with the following code 

Fig. 12 Network plot of eligible comparisons for the network meta-analysis of treatment efficacy for acute mania. The left network includes all 
studies while the right excludes the studies that did not evaluate the placebo

Table 5 Heterogeneity statistics by treatment

Treatment Studies P value (RE 
vs FE)

τ̂ 2 I2

ARI 7 0 0.07 73.73

PLA 36 0 0.18 78.22

HAL 8 0 0.16 60.76

QUE 7 0 0.12 76.57

LITH 8 0 0.35 70.03

ZIP 5 0 0.08 75.77

OLA 13 0 0.43 88.19

DIV 8 0 0.15 55.45

RIS 5 0 0.21 86.08

CARB 3 1 0 0

LAM 1 . . .

PAL 2 . . .

TOP 1 . . .

ASE 1 . . .
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With data in the right shape, we now perform a strati-
fied comparative meta-analyses analogous to the first 
analysis in Cipriani et  al. [73] to obtain the direct evi-
dence of the relative efficacy of the evaluated antimanic 
drugs relative to placebo. 

For each treatment assessed in at least two studies, the 
fitted model structure is 

 where drug is a binary variable for treatment, either 
placebo or an active antimanic drug. The options 
design(comparative) outplot(rr) request for 
a forest plot of the summary response rate ratios. To save 
computational time we instruct the procedure not to per-
form model comparison with the option nomc. Otherwise, 
the program would also fit a logistic regression model 
without a drug to then perform an LR test comparing the 
fit of the model with and without the covariate. The sum-
mary RRs presented in the left graph of Fig.  13 indicate 
that all treatments were significantly more effective than 
placebo with the exception of TOP. These results are 
congruent with the conclusion by Cipriani et al. [73].

To include the information present in the data about 
all the comparisons between the different treatments and 
obtain the missing estimates for the LAM vs placebo we 
perform an arm-based network meta-analysis. 

 drug is a categorical variable identifying the 14 
treatments. We inform the procedure that the placebo 
treatment is the reference category with the option 
design(abnetwork, baselevel(PLA).

The imposed model structure is 

In addition to the study-specific random-effects, the 
model includes a second random- effect drug, a nested 
factor within a study.

From the forest plot of the RR summary estimates pre-
sented in right graph of Fig.  13 , all treatments except 
LAM, TOP and ASE were significantly more effective 
than placebo. The CI’s from the arm-based network 
meta-analysis are narrower than the head-to-head com-
parisons except where a comparison was assessed in one 
study reflecting the uncertainty introduced by the indi-
rect evidence. In Fig.  14, the estimated response rates 
from the network meta-analysis present in the right 
graph are consistent with those from the stratified meta-
analysis presented in the left graph. The model-based 
response rate estimates for LAM, TOP and ASE from the 
network meta-analysis have shorter CIs due to borrowing 
information from other studies through the imposed 
correlation structure.

Simulation study
To explore the utility and robustness of the logistic 
regression in a one-group meta-analysis of proportions, 
we conducted a simulation study comparing the perfor-
mance of metapreg’s estimators (exact binomial (23), 
logistic-re-c (37), and logistic-re-m (39)) with the current 
RE, CE and IVhet estimators in metaprop(ftt-harm and 
IV) and metan (ftt-iv, ftt-geom, ftt-arith and arcsine) on 
the point and interval estimation of the population aver-
age proportion. No continuity correction was applied 
to the IV estimator in the presence of zero counts in a  
simulated dataset. We also included the estimates from 
the betabin command as the standard robust estimates. 
In total, we assessed 21 estimators.

We explored various scenarios in 2000 simulations, 
with each simulation corresponding to an independent 
meta-analysis. Five meta-analysis sizes were chosen J = 
3, 5, 10, 20, and 30. The true population mean π was set 
to be 0.2, 0.5 or 0.9. The sizes of each study Nj were ran-
domly chosen from a uniform distribution on the interval 
10-500. Two data generation mechanisms were consid-
ered: a uniform mixture of binomials distribution and a 
beta mixture of binomials. To simulate the beta-binomial  
distribution, we first drew the binomial probabilities  
pj from a beta distribution with parameters a and b 
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Fig. 13 Forest plot of proportions of patients with acute mania who responded to 3-week anti-mania treatment with diverse drugs from stratified 
meta-analysis with RE logistic regression model (left) and arm-based network meta-analyses with ME logistic regression model (right)

Fig. 14 Forest plot of efficacy of antimanic drugs relative to the placebo from stratified comparative meta-analyses (left) and from arm-based 
network meta-analyses with ME logistic regression model (right). A relative response rate > 1 indicates higher efficacy than placebo
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parameterized in terms of the population mean π and the 
variance τ 2 of π

Four values of τ 2 were considered for each π . Given 
the restriction that a, b ≥ 1 , then 0 < τ 2 ≤ 1

12
 depend-

ing on π . The considered for values were [ 1
37.5

,
1

50
,
1

75
,

1

150
] , 

[ 1
12
,
1

16
,
1

24
,
1

48
] and [ 1

123
,

1

164
,

1

246
,

1

492
] , for π = 0.2, 0.5 

and 0.9 respectively. Given a and b, overdispersion is 
0 < φ = 1

1+ab
≤ 0.5 . φ gets larger as the spread of π 

becomes wider (larger τ 2).
We assessed the estimators for bias, mean squared 

error (MSE, the mean of the squared bias), and empirical 
coverage (the percentage of meta-analyses that included 
the value π in their 95% CI) in the presence of zero, weak, 
moderate and strong overdispersion. To compute the 
performance statistics of the estimators, we excluded 
the simulations where either the beta-binomial or logis-
tic models failed to converge. The code to generate the 
simulated data can be downloaded at https:// github. com/ 
VNyaga/ Metap reg/ tree/ master/ Simul ation.

Simulation results
Performance of the estimators in the absence 
of heterogeneity
The question we sought the answer to was, is the esti-
mated heterogeneity by the RE model significantly 
greater than zero? The LR test between the RE and the 
CE model answers this question. The conundrum is that 
the RE model can fail to converge when the estimate for 
τ is on the boundary of the parameter space making it 
impossible to perform the LR test. With three studies, 
there is still 1 degree of freedom implying that the two 
parameters in the RE models are identifiable. The RE 
logistic model almost always converged while the beta-
binomial model succeeded half the time (see Table  6). 
The RE logistic model detected significant heterogeneity 

(53)
a = π2 ∗ (1− π)

τ 2
− π

b =
(
π2 ∗ (1− π)

τ 2
− π

)
∗
(
1

π
− 1

)

in 0.90-1.01% and 1.40-1.59% of meta-analysis with three 
and five studies, respectively. The beta-binomial model 
detected significant heterogeneity twice as much; 1.84-
1.98% and 2.64-3.02% in a meta-analysis of three and five 
studies, respectively.

Figures  15 and  1 of the Supporting  information show 
that the bias of all estimators is relatively small. When 
π = 0.5 , the estimators yield similar estimates and differ-
ences emerge when π → 0 or π → 1 . Over-parameteri-
sation can lead to inefficient estimation. For this reason, 
the RE estimators are less efficient than the CE estima-
tors. Increasing the size of the meta-analysis results in 
tremendous efficiency gain when π = 0.5.

In Fig. 16, the Clopper-Pearsion CI of the exact bino-
mial estimator is too conservative. The wald CI’s of the 
logistic estimators have satisfactory coverage in small 
meta-analyses.

Performance of the estimators in the presence 
of heterogeneity
Summary statistics from a simulation study do not give 
the same understanding of the behavior of the estimators 
as graphs. Figures 2, 3 and 4 of the Supporting informa-
tion show the distribution of the estimated mean for dif-
ferent values of the true location and variance of π and 
the size of the meta-analysis. For all estimators, the distri-
bution becomes more dispersed when π = 0.5 and when 
the number of studies in the meta-analysis decreases.

Four clusters of estimators emerge in Fig.  17 with 
increasing bias. The exact-ce, betabin, logistic-re-m 
and IV-re estimators form the first-class cluster of the 
least biased estimators. The ftt and arcsine family of 
estimators form the second-class class. The logistic-re-
c and the IV-ce estimators are in the third and fourth 
classes, respectively, with the most bias. Except in the 
first-class estimators, bias increases with dispersion. 
When π → 0 and π → 1 , π is underestimated and 
overestimated respectively.

Figure  18 shows that all the estimators have inferior 
coverage probability when the meta-analysis includes 
only 5 studies. Increasing the size of the meta-analysis 
improves the coverage of the RE and the quasi estimators 
except the logistic-re-c. In contrast, the coverage of the 
CE estimators deteriorates. Except for the beta-binomial 
and the logistic-re-m, the coverage of all other estimators 
worsens with more heterogeneity.

In Figs. 5, 6 and 7 of the Supporting information there 
are larger differences in efficiency when π = 0.5 com-
pared to when π nears its borders. All estimators lose 
efficiency with increasing heterogeneity. Increasing the 
size of the meta-analysis resulted in efficiency gain.

The bias and poor coverage of the logistic-re-c is 
expected. As indicated earlier, the logistic-re-c estimator 

Table 6 Convergence rate and false heterogeneity detection 
rate of the logistic-normal and beta-binomial model

π Model 3 studies 5 studies

0.2 logistic-normal 99.99 (1.01) 100 (1.51)

beta-binomial 52.04 (1.97) 53.49 (2.84)

0.5 logistic-normal 99.98 (0.90) 99.97 (1.40)

beta-binomial 48.91 (1.84) 52.96 (2.64)

0.9 logistic-normal 100 (0.91) 100 (1.59)

beta-binomial 47.39 (1.98) 52.47 (3.02)

https://github.com/VNyaga/Metapreg/tree/master/Simulation
https://github.com/VNyaga/Metapreg/tree/master/Simulation
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the mean proportion on the condition that the random 
effect is zero. The discrepancy between the conditional 
mean proportion and the population-averaged propor-
tion increases as τ 2 increases [75]. The poor coverage of 
the binomial estimator is also expected because when 
the structure of the mean function is correct and the true 

distribution is incorrect, the ML estimate of the binomial 
parameter will be consistent but the standard error will 
be incorrect [6]. The beta-bin and the logistic-re-m esti-
mators consistently have the best coverage, least bias and 
highest efficiency. These results are consistent with the 
findings of Trikalinos et al. [76] and Lin and Chu [77].

Fig. 15 Simulation study. Scatter plot of mean squared error and mean bias of π when J = 3 and 5, π = 0.2, 0.5, and 0.9. Simulated data generated 
from binomial distribution. Light grey lines at 0

Fig. 16 Simulation study. Empirical coverage probability of 95% confidence intervals of π when J = 3 and 5, π = 0.2, 0.5, and 0.9. Simulated data 
generated from binomial distribution. Light grey line at 95%
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Discussion
The most important assumption in any statistical analy-
sis is that the outcome measure of a choice model should 
accurately reflect the phenomenon of interest. However, 
the chosen model is never exactly correct and is only 

an approximation of a complex and complicated real-
ity. The current methods of meta-analysis of binomial 
proportions within the approximate likelihood frame-
work have structural flaws and suffer from loss and dis-
tortion of information. Using the binomial, logistic, or 

Fig. 17 Simulation study. Bias of π . Simulated data generated from binomial distribution with 1.π = 0.2 , J = 5, 10, 20, 30 and τ 2 = [
1

37.5
,
1

50
,
1

75
,

1

150
] 

in the top panels, 2. π = 0.5 , J = 5, 10, 20, 30 and τ 2 = [
1

12
,
1

16
,
1

24
,
1

48
] in the middle panels, and 3. π = 0.9 and τ 2 = [

1

123
,

1

164
,

1

246
,

1

492
] 

in the bottom panels. The number of studies J = 5, 10, 20, 30 . The horizontal line at 0

Fig. 18 Simulation study. Empirical coverage probability of 95% confidence intervals of π . Simulated data generated from binomial distribution 
with 1.π = 0.2 , J = 5, 10, 20, 30 and τ 2 = [

1

37.5
,
1

50
,
1

75
,

1

150
] in the top panels, 2. π = 0.5 , J = 5, 10, 20, 30 and τ 2 = [

1

12
,
1

16
,
1

24
,
1

48
] in the middle 

panels, and 3. π = 0.9 and τ 2 = [
1

123
,

1

164
,

1

246
,

1

492
] in the bottom panels. The number of studies J = 5, 10, 20, 30 . Light grey line at 95%



Page 36 of 39Nyaga and Arbyn  Archives of Public Health           (2024) 82:14 

logistic-normal model for meta-analysis of binomial 
proportions preserves all information about the distri-
bution nj ∼ (πj ,Nj) from each corresponding study and 
models the true parameter πj , rather than observed pro-
portion. Consequently, obtaining functions of the model 
parameters is easy. This in turn enables us to obtain more 
detailed answers from the data(e.g. in example V). In 
one group meta-analysis, the binomial model assumes 
that nothing is known about the distribution of πj . But 
this information is present in the data. In the RE logis-
tic model the observed proportions are used as the initial 
information about the distribution of πj.

The RE logistic model has been recommended [15, 41, 
77] for meta-analysis of proportions. A concern often 
expressed about the assumption of normally distrib-
uted random effects is lack of justification [1]. In logistic 
regression, it is computationally convenient and natural 
(the variance of the binomial parameter is a function of 
the mean) for the random effect to enter the model on 
the same scale as the predictor terms. That said, the valid-
ity of any assumption regarding the random effects distri-
bution is conceptually difficult to check because they are 
never directly observed. Outside meta-analysis, studies 
have shown through simulations that misspecifying the 
random-effects distribution in linear mixed-effects mod-
els [78] has negligible impact on the ML estimators. For 
logistic random intercept models, different assumptions 
for the random effects distribution often provide similar 
results for estimating the regression effects [79]. In meta-
analyses of test performance studies, the logistic-normal 
model performs better than the other methods [44]. Our 
simulation study showed that the logistic-normal and 
standard robust beta-binomial model are indistinguisha-
ble in modeling overdispersed data generated from beta-
binomial distribution.

For users of Stata, these models are seldom used 
because they have not been implemented in a user-
friendly package. metapreg was expressly written and 
optimized for evidence synthesis of proportions from 
binomial proportions and could potentially improve the 
quality of inference. The true distribution of a random 
variable can never be validated. However, if a statistical 
model is appropriate for the observed data at hand, the 
behavior of the observed data should reflect the prop-
erties of the assumed distribution. A unique feature of 
metapreg over the existing procedures for meta-anal-
ysis of proportions in Stata is the ability to present the 
model-based estimates and their Wald CIs alongside the 
observed data. This is useful in understanding the prop-
erties of the assumed distribution, checking the model fit 
to the data and revealing possible outlying studies.

When should the CE or the RE logistic model be 
used? It is realistic and wise to be cautious and assume 

overdispersion is present unless and until it is shown to 
be absent. In true absence of heterogeneity, the RE model 
is over-parameterized. However, given the diversity of 
studies in any meta-analysis, the requirement that the 
expected proportion of successes is constant among the 
studies will be violated in a strict sense. When moving to 
the logistic regression with random effects, the key idea is 
the estimation of variation between the studies instead of 
testing the null hypothesis that the variance component 
is zero. As we have shown in the examples, the results 
from the RE and CE models will not be far apart unless 
there are important residual differences among the study 
results and the CE model fits the data poorly [2]. When 
the results from the RE and CE models are far apart, it is 
the task of the meta-analyst to identify important sources 
of variation and not doing so would be careless modeling. 
In general, the ME logistic regression allow us to study 
effects that vary by group, for example an intervention 
that is more effective in some studies than others (per-
haps because of unmeasured study-level factors). In FE 
logistic regression, estimates of varying effects can be 
noisy, especially when there are few studies per group; 
ME logistic regression allows us to estimate these inter-
actions to the extent supported by the data through.
metapreg remains a work in progress. Future 

research includes how to quantify the I2 when there are 
covariates in the model and a simulation study to com-
pare the robustness and accuracy of metapreg and the 
existing packages for meta-analysis of multiple binomial 
proportions.

The methods implemented in metapreg are statisti-
cally sound and far more robust than the current meth-
ods for meta-analysis of binomial data. To appropriately 
apply these methods, we recommend that meta-analysts 
should involve or consult a statistician with advanced sta-
tistical knowledge in meta-analysis. We expect this tuto-
rial to accelerate the progress towards optimal methods 
for meta-analysis of proportions.
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