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Abstract 

Background 
Accurate, simple and non-invasive tools are needed for efficient screening of abnormal glu-
cose tolerance (AGT) and educating the general public.  

Aim 
To develop a neural network-based initial screening and educational model for AGT.  
Data and methods 
230 subjects with AGT and 3,243 subjects with normal glucose tolerance (NGT) were allo-
cated into training, validation and test sets using stratified randomization. The ratios of AGT 
versus NGT in three groups were 150:50, 30:570 and 50:950, respectively. A feed-forward 
neural network (FFNN) was trained to predict 2-hour plasma glucose of 75g Oral Glucose 
Tolerance Test (OGTT) using age, family history of diabetes, weight, height, waist and hip 
circumference. The screening performance was evaluated by the area under the receiver 
operating characteristic (ROC) curve (AUC) and the partial AUC (in the range of false posi-
tive rates between 35 and 65%) and compared to those from logistic regression, linear 
regression and ADA Risk Test.  

Results 
Sensitivity, specificity, accuracy and percentage that needed further testing at 7.2mmol/L in 
test group were 90.0 %( 95%CI: 78.6 to 95.7%), 47.7% (95%CI: 44.5 to 50.9%), 49.8% 
(95%CI: 46.7 to 52.9%) and 54.2% (95%CI: 51.1 to 57.3%) respectively. The entire and par-
tial AUCs were 0.70 (95%CI: 0.62 to 0.78) and 0.26 (95%CI: 0.22 to 0.30). The partial AUC 
of the NN was higher than those of logistic regression (p=0.06), linear regression (p=0.06) 
and ADA Risk Test (P=0.006).  

Conclusion 
NN can be used as a high-sensitive and non-invasive initial screening and educational tool 
for AGT.  
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Introduction 

Identification of unrecognized abnormal glucose tolerance (AGT), including undiagnosed 
diabetes (UDM) and impaired glucose tolerance (IGT), is important in reducing the risk of 
diabetes complications. It is also important to prevent or postpone the occurrence of diabetes 
(1-3). The Oral Glucose Tolerance Test (OGTT) is the standard diagnostic test for AGT but it 
is invasive, labour-intensive and impractical as a standalone screening test (4). Targeted 
screening has been recommended as a cost-effective alternative to the universal screening 
(5-8). Under this strategy, an initial test is needed to decide who should take OGTT. For an 
initial test to be of value, the sensitivity should be high enough to ensure as many asympto-
matic patients recommended for OGTT as possible. Meanwhile, its specificity should be at a 
reasonable level to avoid unnecessary OGTT in low-risk groups. An ideal initial test should 
also be simple, non-invasive and objective which means less vulnerable to various biases 
when applied in large-scale populations (1;3-6;8;9).  

It appears that only a small set of risk factors would satisfy aforementioned requirements. 
Therefore, the model for developing an initial test using only these factors should have a 
strong ability to recognize the subtle differences between individual risk profiles. Neural net-
works (NNs) are models that are patterned after the structure of the human brain (10). They 
contain a series of mathematical equations that are used to simulate biological processes 
such as learning and memory. NNs have the ability to automatically ‘learn’ mathematical re-
lationships between input and output variables, and could model virtually almost all the 
complex and non-linear relationships. They have been successfully applied to a variety of 
medical problems that require pattern recognition and complex classification (ie. disease 
screening, disease prediction, assessing the prognosis) (11-15).  

Our objective is to develop a sensitive, simple and non-invasive model which can be used as 
the initial test for targeted screening of AGT and for educating the general public. The NN will 
be used to predict the 2-hour plasma glucose (2hPG) after 75g OGTT, based on six risk fac-
tors.  

Research design and methods  

Subjects selection and exclusion criteria 

The subjects were from a population-based epidemiological survey of diabetes in central 
China. The total population in the study area was 350,000 at the time of study. A total of 13 
districts were stratified into three strata on the basis of average annual income (high, medium 
and low). Three districts were selected using a stratified cluster sampling technique. The 
sampling rate was 1%. In the selected districts, residents aged between 20 and 74 years and 
living in the area for at least 5 consecutive years were eligible for the survey.  
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Prior to the survey, signed informed consents were obtained from all participants. Partici-
pants were asked to complete a standard questionnaire and were invited for health check-up. 
Data on family history of diabetes, age, weight, height, hip and waist circumference were col-
lected; each subject also underwent a standard OGTT recommended by the World Health 
Organization (WHO). A cutoff point of 7.8mmol/L (140mg/dl) was used to diagnose abnormal 
or normal glucose tolerance (NGT). In total, 3380 subjects were recruited for the survey. In-
dividuals with previously diagnosed diabetes (n=84) and with missing data on 2hPG (n=23) 
were excluded. The final data consisted of 3,273 subjects, among whom 230 had abnormal 
2hPG.  

Neural Network model design and development  

We chose feed-forward neural network (FFNN) to develop the prediction model because of 
its flexibility and straightforward design, and its successful applications in medical problems 
(10;12-15). Its structure and detailed theories have been well-documented elsewhere 
(10;16). Briefly, artificial neurons, the basic units of the network, are organized into input, 
hidden and output layers. The input layer is responsible for passing information from predic-
tors to the hidden layer. The number of neurons in the input layer corresponds to the number 
of predictors. The hidden layer is the core of the entire network, the network’s ability of data 
modelling is closely related to the design of this layer. The output layer produces the pre-
dicted outputs. Layers are interconnected by weights, which will be adjusted during the 
training process. Before the training process starts, initial random values are assigned to the 
weights connecting input neurons to hidden neurons. Then input-output patterns will be pre-
sented to the network iteratively. The predicted output will be compared with the target output 
at each presentation. The error information then will be ‘back propagated’ to the network and 
the weights are adjusted according to predefined learning rules. Training will continue until 
the difference between predicted and target outputs arrive at a desired level (10;16). NNs 
tend to overfit the data, which means that if a network has been trained too long, it will 
gradually lose the ability to generalize (10;16). So to develop an appropriate NN model, we 
need: 1) a training group to train the network; 2) a validation group to monitor the training 
process to prevent overtraining and select optimal networks, and 3) a test group which has 
never ‘been seen’ by the network in the training process to evaluate the performance.  

For meeting the practical needs in mass screening, we selected the input variables according 
to the following criteria: closely related to AGT, easy to obtain, and could be measured objec-
tively. Through literature review, six variables were selected as the predictors for 2hPG (17-
22).  

Because we aimed to predict the BG value by using only a small subset of predictors, it re-
quires the model to have a very strong fitting ability to recognize the subtle relationship 
between input and output variables. If choosing a network with one hidden layer, we needed 
to have a large number of neurons to implement the approximations. But we did not have 
sufficient training data to design such a big network. Chester found that a FFNN with two 
hidden layers can often yield an accurate approximation with fewer neurons than the one 
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with one hidden layer (23). Another report stated that the approximations of continuous func-
tions may require the network with two hidden layers for full generality (24). Therefore, we 
used a two-hidden-layer network with smaller numbers of neurons in each layer. The number 
of neurons in hidden layers was determined by experiments comparing network perform-
ances with different number of neurons in two hidden layers. During the experiment, 
networks were tested with two to ten neurons in the hidden layers, and for every structure 
several trainings with the same training set were performed so that the performances of 
every structure could be estimated as objectively as possible (23). The final structure of the 
FFNN from input to output layers, in turn, was 6-8-10-1. We used hyperbolic tangent sigmoid 
transfer function in all layers.  

Normal and abnormal subjects were allocated into training, validation and test groups using 
stratified randomization, the size and the partition for abnormal and normal individuals in 
three groups were 150:50, 30:570 and 50:950. The proportion of abnormal to normal cases 
in the training group was determined by trial and error; for the remaining subjects, validation 
and test groups were formed according to estimated prevalence rate (5%) of AGT in central 
China (25). The procedure to form the training group was: firstly, we randomly selected 150 
abnormal cases, then used the validation group as the hypothetical target population and 
tested numerous different ratios of abnormal to normal in the training group on a set of one-
hidden-layer FFNN. We found it was relatively easier to train the network to achieve better 
performance if the ratio of abnormal to normal cases was 3:1.  

All numeric variables were normalized to [-1, 1] scale before being fed into the neural net-
work. The error function was the mean squared error (MSE). Weights were adjusted 
according to the Levenberg-Marquardt optimization (26). Training was stopped when the 
MSE in the validation group began to rise (10;16;27). Predicted normalized 2hPG were then 
back-transformed to the original unit to classify as normal or abnormal 2hPG with 7.8mmol/L 
as the cutoff value. Training was repeated 100 times with different initializations, and the 
network with the best performance on the validation group saved for later use.  

The ANN model development and construction were done by neural network toolbox in Mat-
lab 6.5 (The MathWorks Inc., USA). 

Neural network model performance analysis 

Using a cutoff of 7.8mmol/L to diagnose AGT, we constructed the Receiver Operating Char-
acteristic (ROC) curve to assess the performance of NN-based model by plotting sensitivity 
against 1-specificity (28). Each point in the ROC plot represents a sensitivity/1-specificity 
combination corresponding to a particular cutoff value. A test with perfect discrimination has 
an ROC plot that passes through the upper left corner (100% sensitivity, 100% specificity). 
Therefore, the closer an ROC plot is to the upper-left corner, the higher the overall accuracy 
of the test. The point closest to (0, 1) on the curve was the most optimal combination of sen-
sitivity and specificity. The areas under the curves (AUC) represent the overall discriminative 
ability of a test independent of cutoff values. The range of the AUC is 0.5 to 1.0. A discrimi-
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native test is considered perfect if AUC=1.0, good if AUC=0.8 to 1.0, moderate if AUC=0.6 to 
0.8, poor if AUC=0.5 to 0.6, an area of 0.5 reflects a random rating model (28). The entire 
AUC provides a useful measure of test accuracy. However, the partial AUC is a more mean-
ingful index in mass initial screening settings. Because we would never need to use points 
with too low (when you will miss most of abnormal individuals) or too high a level of false 
positive rates (when almost all participants will be recommended for further tests), we esti-
mated the partial AUCs in the range of false positive rates between 35% and 65% (29).  
Confidence intervals of entire and partial AUC were calculated using the method proposed 
by Zhang et al. (30).   

To suit the needs of practice, we visually chose two other cutoff points from the ROC curve 
of validation group using the following strategies: the sensitivity higher than 90% and the 
false positive rate as low as possible; the false positive rate smaller than 50% and the sensi-
tivity as high as possible. The sensitivity (ratio of true positive diagnoses to true positive plus 
false negative), specificity (ratio of true negative to true negative plus false positive), accu-
racy (ratio of the number of correct diagnoses to the total number of subjects), and 
percentage that needed further tests (ratio of true positive plus false positive to the total 
number of subjects) were calculated for the training, validation and test groups at three cutoff 
points.  

For comparisons, the relationship between glucose tolerance and six predictors was mod-
elled using linear regression and logistic regression. The dependent variable was the 
continuous 2hPG for linear regression and the binary status of glucose tolerance for logistic 
regression. Both models were constructed by combining training and validation groups. In 
addition, the risk score was calculated for each subject in the test group using ADA Risk Test 
(31); because the information on childbearing was not available in our data, we assigned 1 
point to all women. We used 25kg/m2 as the cutoff point for the BMI (32). The overall per-
formances of four tests were examined and compared with the entire AUCs and partial AUCs 
in the range of false positive rates between 35% and 65%.  

The analyses were conducted using SAS 8.2 (SAS Institute, Inc., Cary, NC). 

 
Results  

Table 1 shows the characteristics of selected variables in the abnormal and normal AGT 
groups. All six input variables were statistically different between two groups. Abnormal sub-
jects tend to be older, heavier, shorter and with higher waist and hip circumferences and with 
a family history of diabetes. These remarkable differences confirmed the appropriateness for 
the selection of predictors.   
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Table 1   Descriptive statistics of the input and output variables used  

in neural network-based initial screening model 

2hPG& 
Items  

Abnormal(n=230) Normal(n=3043) 

P  value 
(two-sided) 

Input variables    

Family history (yes: no, yes %)  21:209, 10%  156:2887, 5.4%  <0.05*  

Age (years, Mean(SD), Min to Max) 49.1(9.0), 125.0 to 73.0 40.6 (10.2), 19.0 to 71.0 <0.01 

Height (cm, Mean(SD), Min to Max) 161.1(8.0), 143.0 to 184.0 164.9 (7.4), 135.0 to 191.0 <0.01 

Weight (kg, Mean(SD), Min to Max) 67.1(11.3), 43.0 to 101.0 63.7 (9.7), 37.5 to 112.0 <0.01 

Waist circumference (cm, Mean(SD),  
Min to Max) 85.4(11.2),  57.8 to 115.0 77.6(10.0), 51.0 to 119.3 <0.01 

Hip circumference (cm, Mean(SD),  
Min to Max) 92.7(6.9), 75.5 to 111.5 89.4(6.2), 64.5 to 124.8 <0.01 

Output variable     

2hPG BG(mmol/L, Mean (SD), Min to 
Max) 11.9 (5.0),  7.8 to 36.0 5.1 (1.2), 0.6 to 7.7 <0.01# 

& 2-hour plasma glucose after 75-g oral glucose tolerance test, referring to the standard of WHO 1998 to diag-
nose normal and abnormal glucose tolerance 
*  Chi-square test 
# Wilcoxon rank sum test 
all other variables were near-normal distribution and compared by using two-sample t-test.  

 

The overall performance of the NN-based model was good (AUC: 0.91; 95%CI: 0.87 to 0.95) 
for the training group, moderate for the test (AUC: 0.70; 95%CI: 0.62 to 0.78) and validation 
group (AUC: 0.73; 95%CI: 0.63 to 0.83). Table 2 shows predicted results at three cutoff 
points. The test group had the highest sensitivity of 90.0% (95%CI: 78.6 to 95.7%) at 
7.2mmol/L (cutoff point 1), but with the highest percentage that needed further tests (54.2%; 
95%CI: 51.1 to 57.3%), the lowest specificity (47.7%; 95%CI: 44.5 to 50.9%) and accuracy 
(49.8%; 95%CI: 46.7 to 52.9%). At the higher cutoff point (7.6mmol/L), the percentage that 
needed further testing in the test group was reduced to 50.4% (95%CI: 47.3 to 53.5%) and 
the specificity increased to 51.6% (95%CI: 48.4 to 54.8%) and accuracy to 53.4% (95%CI: 
50.3 to 56.5%). However, this cutoff point missed 2% of AGT cases. The performance for 
validation group was similar to those in the test group but poorer than in the training group.  
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Table 2. Performance of neural network-based model for initial screening abnormal glucose tolerance  

Group  Sensitivity (%)  Specificity (%)  Accuracy (%)  PNFT/TPR (%)  

Cutoff point 1: 2hPG#=7.2mmol/L     

Test  90.0 (78.6 to 95.7)  47.7 (44.5 to 50.9)  49.8 (46.7 to 52.9)  54.2 (51.1 to 57.3)/5.0  

Validation  90.0 (74.4 to 96.5)  50.4 (46.3 to 54.4)  52.3 (48.3 to 56.3)  51.7 (47.7 to 55.7)/5.0  

Training  93.3 (88.2 to 96.3)  68.0 (54.2 to 79.2)  87.0 (81.6 to 91.0)  78.0 (71.8 to 83.2)/75.0  

Cutoff point 2: 2hPG=7.6mmol/L     

Test  88.0(76.2 to 94.4)  51.6 (48.4 to 54.8)  53.4 (50.3 to 56.5)  50.4 (47.3 to 53.5)/5.0  

Validation  90.0(74.4 to 96.5)  53.9 (49.8 to 57.9)  53.9 (51.7 to 59.6)  48.3 (44.4 to 52.3)/5.0  

Training  90.7(85.0 to 94.4)  76.0 (62.6 to 85.7)  87.0 (81.6 to 91.0)  74.0 (67.5 to 79.6)/75.0  

Operating cutoff point: 
2hPG=7.8mmol/L     

Test  88.0(76.2 to 94.4)  54.3 (51.1 to 57.5)  56.0 (52.9 to 59.1)  47.8 (44.7 to 50.9)/5.0  

Validation  86.7(70.3 to 94.7)  56.3 (52.2 to 60.3)  57.8 (53.8 to 61.7)  45.8 (41.9 to 49.8)/5.0  

Training  86.7(80.3 to 91.2)  82.0 (69.2 to 90.2)  85.5 (80.0 to 89.7)  69.5 (62.8 to 75.5)/75.0  

Numbers in parentheses are 95% confidence intervals 
*: PNFT: Percentage that needed further test (including true positive and false positive) 
TPR: true positive rate in the studied group 
#: 2hPG: 2-hour plasma glucose after oral glucose tolerance test 

 

Figure 1 shows the ROC curves of the NN-based model, logistic regression, linear regres-
sion and ADA Risk Test and their AUCs and pAUCs estimates. There was no statistical 
difference in the overall performance between four tests (P>0.05). But all AUCs were signifi-
cantly greater than 0.5 (P<0.001). Although the entire AUCs show that the NN was not 
superior, its diagnostic ability was higher than the other models in the false positive rates 
range from 35% to 65%. The partial AUC was 0.26 (95%CI: 0.22 to 0.30) for the NN and 
ranged from 0.19 to 0.15 for the other tests. The difference was borderline significant for the 
comparisons between the NN-based model and logistic regression (p=0.06), and between 
the NN model and linear regression (p=0.06). The NN’s pAUC was significantly higher than 
that of the ADA Risk Test (p=0.006). 
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Figure 1. Comparisons of Receiver Operating Characteristic (ROC) curves of the neural network (NN),  

logistic regression (LogR), linear regression (LR) and ADA Risk Test (RT) in test group.  

The diagonal line is the reference line.  

AUC: area under the ROC curve. pAUC: partial AUC in the range of false positive rates between 35% and 65%. 
Point estimates and 95% confidence intervals for the AUCs and pAUCs are given in brackets. 

Discussion  

We demonstrated how neural networks can be used as an initial assessment tool to identify 
AGTs from community populations. It significantly improved the efficiency of the OGTT in 
mass screening of diabetes. Among four compared models, NN-based initial test had the 
best performance. It achieved a satisfactory combination of sensitivity (90.0%) and specificity 
(47.7%). Incorporating this model with OGTT for targeted screening, individuals with a posi-
tive predicted output will proceed to OGTT. From our results, it is apparent to be worth the 
‘value’ of sparing 458 to 522 (45.8-52.2%) unnecessary OGTTs by just missing 5 to 6 (10.0-
12.0%) abnormal individuals. The number of patients requiring OGTT reduced by nearly 
50%. Because the OGTT is an expensive, troublesome and unpleasant test and is not easily 
acceptable among ‘apparently healthy individuals’, but at least at present OGTT is still irre-
placeable for diagnosing AGT (33). Therefore, the NN-based model reported in this study 
would be especially valuable for screening AGT in community population. 
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Very few risk factor-based models have been evaluated for screening both IGT and UDM. 
The sensitivity of screening IGT is generally lower than that of UDM. Based on the existing 
evidence, the sensitivity of 90% is the highest that has ever been reached by a risk factor-
based model (8;34). The sensitivity (90%) of this NN model was even higher than some bio-
chemical tests (35). The performance of a screening test was closely related to the 
prevalence of AGT in the targeted population: the higher the prevalence the higher the sensi-
tivity. Our model was developed and tested in a population with a relatively low prevalence of 
AGT (19;25), so this model should work even better in populations with higher level of AGT 
prevalence.  

Besides the high sensitivity, another advantage of this NN-based model is that all the predic-
tors except for the family history of diabetes can be obtained objectively. Unlike the other risk 
factors-based models, this model used variables with objective properties (age, weight, 
height, waist circumference and hip circumference). Five out of six selected variables can be 
obtained objectively. As to the only predictor (the family history of the diabetes) that may rely 
on the memories of respondents, a previous study found this information provided by partici-
pants was ‘rather accurate’ (36). So this model is less likely to incur information biases when 
applied to a larger population.  

We selected input variables purely based on prior knowledge instead of their statistical char-
acteristics within the study population (37). The reasons are: firstly, we were attempting to 
develop a model that was suitable for mass screening, the input variables should be closely 
related to AGT, easy to acquire and at low cost. However, not all the known factors linked to 
AGT have these features. Secondly, at present there is no well-established methodology for 
the NN choosing the appropriate subset from the candidate predictors (16;27).  Eventually 
the six most frequently reported risk factors were included to predict the 2hPG. The links be-
tween these variables and AGT can be found among almost all kinds of genetic backgrounds 
(3;5;6;8;17-21;25;34), suggesting this model may also work well in the other populations. The 
choice of these variables makes it possible to use routine health data to screen AGT. It could 
even simply use self-reported information to make predictions, which may be ideally applied 
to the settings with limited resources.  

Providing the network structure is appropriate and the training is sufficient, the model’s per-
formance can be affected by two factors: 1) the ratio of normal to abnormal subjects in the 
training group; and 2) the selection of the cutoff values. The first factor is determined before 
the training process. It is related to the maximum recognizing abilities that the network can 
reach: the more abnormal cases in the training group the higher the sensitivity. However, it 
will inevitably increase false positive rates. The second factor can be used to adjust the per-
formance after the training completed. Users can choose the cutoff points according to their 
needs.  But it always needs to make trade-off between true positive and false positive. For 
example, lower cutoff values identify more true AGTs but bring in more false positive cases.  

Another advantage of using the NN to predict 2hPG is related to the NN’s fault tolerance 
(11;16;27). The fault tolerance can make the NN work well even with the data with missing or 
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wrong information, which are fairly common in large epidemiological surveys. Although the 
data quality in this study was high, there still were some variables with incomplete or unrea-
sonable readings. To develop a screening model suit for epidemiological data, we did not 
clean raw data but directly fed the network with ‘uncleaned’ ones. The prediction perform-
ance was still as good if not better.  

NNs are capable of establishing the relationship between inputs and output through learning 
from training samples, users need not tell the network what the relationship is. Furthermore, 
the NN makes no assumption about the distributions of predictors and also does not require 
predictors to be independent. Thus a major concern of multicollinearity in conventional mod-
els would no longer be a problem. Therefore, we introduced predictors, such as weight and 
height which are normally correlated, into the model directly (10-12;16;27).  

There are several issues which need to be addressed in future studies before this new meth-
odology can be widely used in practice. How is this model’s generalizability? Will a similar 
model development strategy suffice or what modifications should be made to meet the needs 
in diverse settings? Will the risk factor selection strategy work similarly well in other ethnic 
backgrounds?  

In conclusion, we demonstrated neural networks can be used as a high-sensitive and non-
invasive initial test for targeted screening of AGT; it can avoid almost 50% unnecessary 
OGTTs by just missing 10% abnormal individuals comparing to universal screening strategy.  
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