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Abstract

Background: In medical and biomedical areas, binary and binomial outcomes are very common. Such data are
often collected longitudinally from a given subject repeatedly overtime, which result in clustering of the
observations within subjects, leading to correlation, on the one hand. The repeated binary outcomes from a given
subject, on the other hand, constitute a binomial outcome, where the prescribed mean-variance relationship is
often violated, leading to the so-called overdispersion.

Methods: Two longitudinal binary data sets, collected in south western Ethiopia: the Jimma infant growth study,
where the child’s early growth is studied, and the Jimma longitudinal family survey of youth where the adolescent’s
school attendance is studied over time, are considered. A new model which combines both overdispersion, and
correlation simultaneously, also known as the combined model is applied. In addition, the commonly used
methods for binary and binomial data, such as the simple logistic, which accounts neither for the overdispersion
nor the correlation, the beta-binomial model, and the logistic-normal model, which accommodate only for the
overdispersion, and correlation, respectively, are also considered for comparison purpose. As an alternative
estimation technique, a Bayesian implementation of the combined model is also presented.

Results: The combined model results in model improvement in fit, and hence the preferred one, based on
likelihood comparison, and DIC criterion. Further, the two estimation approaches result in fairly similar parameter
estimates and inferences in both of our case studies. Early initiation of breastfeeding has a protective effect against
the risk of overweight in late infancy (p=0.001), while proportion of overweight seems to be invariant among
males and females overtime (p=0.66). Gender is significantly associated with school attendance, where girls have a
lower rate of attendance (p=0.001) as compared to boys.

Conclusion: We applied a flexible modeling framework to analyze binary and binomial longitudinal data. Instead of
accounting for overdispersion, and correlation separately, both can be accommodated simultaneously, by allowing
two separate sets of the beta, and the normal random effects at once.
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Background

In medical and biomedical areas, binary and binomial out-
comes are very common. The generalized linear model
family [1-3] offers, among others, a suitable modeling
framework. Such data are often collected repeatedly in
time. Let 75 be a longitudinal binary outcome for subject i
at the /” time point, such that each subject has 7; measure-
ments. The sum ¥; = 377", 7y follows a binomial distribu-
tion. It is well known that, while i.i.d. Bernoulli variables do
not contradict the prescribed mean-variance relation, ii.d.
binomial data can, exhibiting extra variability beyond the
binomial model, leading to the so-called overdispersion in
the latter, in addition to the correlation emanating from the
repeated measures nature. In the past, overdispersion and
correlation have been handled separately. To deal with
overdispersion, the beta-binomial model is a popular and
analytically tractable alternative to the binomial model,
which accounts for the overdispersion not accommodated
for in the binomial model, thereby allowing for a better fit
to the observed data [4,5]. On the other hand, correlation is
accommodated for by making use of generalized linear
mixed models [6-8], which combine the general exponen-
tial family models with normally distributed random effects,
are attractive for repeated measurements. In this paper, we
use a general and flexible framework for such combina-
tions, proposed by Molenberghs et al [9]. These authors
focused on likelihood based methods for inference. In this
paper, we have tried to present how the new combined
model proposed by Molenberghs et al [9], can be imple-
mented in the Bayesian paradigm. In addition, the ability to
specify prior distribution will help to incorporate more in-
formation in inference, especially for complex models, like
the combined model, that attempt to capture overdisper-
sion and clustering using two separate sets of random
effects. Further, we considered two real world data sets and
analyzed, first in the likelihood context, and then in the
Bayesian, which could also be considered as sensitivity
analysis.

Two longitudinal binary data sets, collected in south
western Ethiopia: the Jimma infant growth study, where
the child’s early growth is studied, and the Jimma longi-
tudinal family survey of youth where the adolescent’s
school attendance is studied over time, are considered.
One of the key indicators of infant growth is Body Mass
Index (BMI). Many studies suggest that Breastfeeding
status, and socio-economic condition of the parents,
among others, are potential risk factors of BMI [10-12].
School attendance among adolescents varies among gen-
der groups in a way that girls are at higher risk of school
absenteeism as compared to boys. Moreover, adolescents
living in urban areas have have a better school attend-
ance rate, unlike those in the rural setting [13,14].
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The paper is organized as follows. Section (Methods)
briefly reviews standard methods and presents the model
combining the normal and conjugate random effects in
Section (Models combining conjugate and normal random
effects). Avenues for parameter estimation and ensuing
inferences are explored in Section (Estimation), with
particular emphasis on so-called partial marginalization
and Bayesian estimation. The results for the analysis are
presented in Section (Results) followed by discussed in
Section (Discussion). Some concluding remarks are taken
up in Section (Conclusion).

Methods

In this section, we preset the two data sets from the
Jimma case studies and briefly describe conventional
models used for analysis. We start this section with pre-
senting the data followed by a review of the generalized
linear model; we also lay out the notation for the rest of
the paper. Section (Overdispersion models) focuses on
overdispersion in the binary and binomial situations.
Section (Models with normal random effects) reviews
the mixed model methodology for longitudinal data ana-
lysis. Finally, in Section (Models combining conjugate
and normal random effects), the combined model is pre-
sented in which ideas from the mixed model method-
ology are combined with ideas on overdispersion.

The Jimma case studies

Two longitudinal datasets, Jimma Infant Growth Study
and Jimma Longitudinal Family Survey of Youth,
collected in Southwest Ethiopia are considered.

The Jimma Infant Survival Differential Longitudinal
Growth Study is an Ethiopian study, set up to establish
risk factors affecting infant survival and to investigate
socio-economic, maternal, and infant-rearing factors that
contribute most to the child’s early survival. Children
born in Jimma, Keffa and Illubabor, located in Southwes-
tern Ethiopia were examined for their first year growth
characteristics. At baseline, there were a total of 7969
infants enrolled in the study, whereby 4317, 1494, and
2158 were from rural, urban, and semi-urban areas, re-
spectively. The children were followed-up every two
months, until the age of one year. Of special interest in this
manuscript is the risk factor for overweight in children.
Overweight, among infants, is associated with various risk
factors. It is of particular interest to identify these risk fac-
tors in early life through weight and height measurements,
which helps in prevention and treatment of overweight and
obesity to reduce incidence of several adulthood diseases
[15]. This outcome is defined by dichotomization of the
Body Mass Index (BMI), with a BMI over the 85th percen-
tile for his or her age referring to overweight. The 85th
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percentile for age- and sex-specific BMI classification of
overweight is used based on Center for Disease Control
(CDC) recommendation [16]. The question of interest is
whether the percentage of overweight infants changes over
time, and whether the evolution differs for gender, place of
residence (rural, urban and semi-urban), as well as breast
feeding behavior. Table 1 gives a summary of the percen-
tage of overweight infants as a function of gender, location
and follow-up time (age).

The Jimma Longitudinal Family Survey of Youth
(JLESY) is another Ethiopian study where data were
collected from households. The study began in 2005,
and was repeated in 2007. More than 90% of the study
subjects present at baseline were visited and willing to
respond in the second round. The study population is
representative of the relatively large town of Jimma, the
small towns of Yebu, Serbo, and Sheki, and nearby rural
areas. The sample includes 3700 households as well as
700 adolescents. In this paper, the outcome of interest is
the adolescents’ current school attendance coded as 0
(not currently attending) or 1 (currently attending).
Current school attendance was 90.2% and 91.1% in the
first round survey and 93.5% and 92.8% in the second
round for male and 3 female adolescents, respectively.
The research question is to examine whether or not the
percentage of school attendance depends on adolescents
involvement in work to support themselves or their fa-
milies to earn money, whether they are living in urban
towns or rural areas, as well as on gender and age.

Standard generalized linear model
A random variable Y follows an exponential family distri-
bution if the density is of the form

F0)=f0ln ¢) = exp{¢d" yn — w(n) +c(r, 9]},

(1)

for a specific set of unknown parameters n and ¢, and
for known functions ¥(-) and c(:, -). Often, n and ¢ are

Table 1 Jimma Infant Growth Study

Time Rural Urban Semi-urban
Female Male Female Male Female Male
0 115 12.2 16.5 145 203 215
2 121 12.7 134 135 20.6 224
4 121 124 12.7 164 225 20.2
6 134 123 13.8 149 183 210
8 127 11.8 14.9 19.5 202 23.1
10 134 114 149 149 19.5 226
12 138 14.1 169 16.0 17.6 182

Percentage of overweight male and female infants by place of residence for
each of the seven follow-up times.
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termed ‘natural parameter’ (or ‘canonical parameter’)
and ‘dispersion parameter, respectively. For this family,
in general, the mean and variance are related [17].

For binary responses, the model of interest is: Y~ Ber-
noulli (). We want to explain variability between outcome
values based on covariate values with density function

fOln, @) =1 —m)'™
= exp {yln( T

1_ﬂ)+ln(1—ﬂ) . (2)
The mean is given by u=m and the variance, var () =
(1 -m) [1].
When collecting a set of data, let Y7,..., Y5 be a set of
independent binary outcomes, and let x,..., x5 repre-
sent the corresponding p-dimensional vectors of covari-

) = x' 56 is
the logistic regression model with £ a vector of p fixed,
unknown regression coefficients.

T
1—m;

ate values. With a logit link function, ln(

Overdispersion models

The standard Bernoulli model assumes that the mean and
variance depend on a single parameter. Though a set of
iid. Bernoulli data cannot contradict the mean-variance re-
lationship, it may not hold true for data having a hierarchical
structure of the form z; successes out of #; trials.

For the Jimma infants study, considering iid. Bernoulli
data, the sample average probability of success and the
sample variance are 0.150 and 0.128, respectively, indicating
that the prescribed mean-variance link is maintained. In
contrast, in the binomial setting, taking the hierarchical
structure into account, the sample average and the sample
variances are 0.141 and 2.107, respectively implying that
the sample contradicts the mean-variance relationship for
these data.

Similar exploratory analyses on the Jimma Longitudinal
Family Survey of Youth were undertaken. For the binomial
response, taking the two repeated measurements results in
sample average probability of success 0.919 and sample
variance 0.168 indicating that the results are in line with
the prescribed mean-variance relationship which is known
to be always true for the Bernoulli case. This may suggest,
at first sight, that these data are not prone to exhibit strong
overdispersion, even in the hierarchical binomial setting. In
addition to the exploratory analysis, we also made tests for
overdispersion. The commonly use approach is to compute
the ratio of the residual deviance to the residual degrees of
freedom which is approximates the overdispersion para-
meter (¢ ). When the ratio is appreciably larger than 1,
overdispersion is said to occur. It is pointed out that this
approach could be misleading when 7p; is not sufficiently
large, where p; is probability of the success event. This is
because it is based on asymptotic theory. As a result, a
better approach is based on a quasi-binomial model which
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allows more dispersion than the binomial model [18]. The

approximated overdispersion (¢ = 2.37) computed as the
ratio of the residual deviance to the residual degrees of free-
dom in the Binomial, and the one estimated in the quasi-
binomial model ((}5 =2.47) for the Jimma Infants Growth
data are very similar, both suggesting the presence of strong
overdispersion. However, similar analysis for the Jimma
Family Survey data does not suggest a considerable over-
dispersion, with values 0.765 and 1.129, approximated by
the ratio of the residual deviance to the residual degrees of
freedom in the Binomial, and estimated by the quasi-
binomial, respectively.

An elegant way to account for overdispersion is through
the so-called beta-binomial model, in which the Bernoulli
model is combined with a beta distribution [17,19].

Models with normal random effects

For non-Gaussian data, the well-known generalized
linear mixed model, in which the linear predictor con-
tains random effects in addition to the usual fixed
effects, is a common choice [6-8]. These random effects
are usually assumed to come from a normal distribution.
The model can be specified as follows:

Let Y; be the jth outcome measured for subject
i=1,..,N,j=1,., n; and group the n; measurements
into a vector Y;. Assume that, in analogy with Section
(Standard generalized linear model), conditionally upon
q- dimensional random effects b;~ N (0, D), the out-
comes Y;; are independent with densities of the form

fiWilbi, €, ¢) = exp{d ™ yhi — v(y) + ¢y, 9)] },
(3)

with

nly (A5)] =1 (%’)
= n[E(Yy|bi,€)] = x 56 + 2 by, (4)

for a known link function #(-), with x; and z; p-di-
mensional and q-dimensional vectors of known cov-
ariate values, with ¢ a p-dimensional vector of
unknown fixed regression coefficients, and with ¢ a
scale (overdispersion) parameter. Finally, let f (b;|D)
be the density of the N (0, D) distribution for the
random effects b;.

Here, the hierarchical approach is needed because
we are working with longitudinal data. More pre-
cisely, in our model, the natural parameter is written
as a linear predictor, a function of both fixed and
random effects.

Models combining conjugate and normal random effects
Combining both the overdispersion effects (Section
Overdispersion models) and the normal random effects
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(Section Models with normal random effects) into the
generalized linear model framework, produces the fol-
lowing general family [9]:

fi(ij|bi,€,6y, @) = exp{d" [yids — w(Ly)] + c(yy, ®) }.
(5)

with notation similar to the one used in (3), but now
with conditional mean

E(Yij|bia §,0;) = = Oikij, (6)

where the random variable 8; ~ G;; (9;, 0;), K;=g (x;’
§+z;" by), Y, is the mean of 6; and o is the correspond-
ing variance. Finally, as before, b;~ N (0, D). Write n; =
x5 €+z;" b; Unlike in Section (Models with normal
random effects), we now have two different notations, #;
and A; , to refer to the linear predictor and/or the nat-
ural parameter. The reason is that A; encompasses the
random variables 6;; , whereas 7, refers to the ‘GLMM
part’ only. A detailed overview of the model can be
found in Molenberghs et al [9].
For the case of binary data, we assume that

Yij ~ Bernoulli (ﬂl‘/’ = einij)a (7)

o — exp(x'i,f + Z'ijbi)
v 1+ exp(x'iijr Z'ijbi) '

(8)

where 0~ Beta(a, ). Indeed, this model also intuitively
seems useful, as overdispersion and correlation due to
the data hierarchy can occur simultaneously.

The model is a two-level model with two types of ran-
dom effects: (a) the b; to accommodate correlation
among repeated measures (and some overdispersion);
(b) the 8 for additional overdispersion. While (a) turns
the model into a two-level model, rather than a one-
level one, (b) does not further add a level, because it
merely accommodates overdispersion. This is to be com-
pared with a classical generalized linear model, where
also overdispersion random effects can be taken into ac-
count (e.g., beta in the Bernoulli model to yield the beta-
binomial; gamma in the Poisson model to yield the
negative binomial; etc.), while keeping the so-resulting
models remain one-level models.

Further, because the 6, follow a conjugate distribu-
tion, they do not have an impact on the shape of the re-
gression function (like the normal random effects in a
linear mixed model), hence there is greatly reduced
sensitivity to assumptions about the random effects.
This is one of the elegant properties of conjugate ran-
dom effects.
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Estimation
In the likelihood framework, estimation proceeds by in-
tegration. The likelihood contribution of subject i is

ﬁ(yi|l97Da ‘9i72i)

_ / T 15 (0519, 51, 01 (b D) (6:19:51) b6,
j=1

9)
From this, the likelihood is given as:
N
L(9,D,9,%) = [ [£(3:/9, D, 9, £1)]
l;l .,
- i=1 /H
(10)

Here, 9 groups all parameters in the conditional model
for Y;. In the binomial case, the expression takes the form:

f<2i1|71i;, bi)
Nij—Zjj

. ;!
— -1 t](?."-H Yy .
; ( ) ¥ Zij!t!(nij — Zi/' — t)'

B(“ﬁﬁj)
(11)
with
B exp(x',-jf + z'ijbi)
1 + exp(x','/f +Z'ijbl')

Kij

It is straightforward to obtain the fully marginalized
probability by numerically integrating over the normal
random effects, and using a tool such as the SAS pro-
cedure NLMIXED that allows for normal random effects
in arbitrary, user-specified models. More details can be
found in [9].

As an alternative estimation method, we turn to the
Bayesian paradigm, combined with the popular Markov
Chain Monte Carlo (MCMC) technique, making analyses
of real-world complex data feasible [15]. In the Bayesian ap-
proach, prior distributions are assigned to the parameters
and the random effects to adjust for parameter uncertainty.
Bayesian inference for estimation of parameter 0 is based
on the posterior distribution, which is proportional to the
likelihood multiplied with the prior distribution.

The Jimma longitudinal studies are characterized by
clustering, resulting form the repeated measurements,
leading to both correlation and overdispersion. When mo-
deling such data, incorporating prior distribution for model
parameters, including that of subject and observation spe-
cific random effects, will better handle the underlying
uncertainties, instead of assuming that they are fixed. With

B(zij +t+ oc,v,/g’j)
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the same model specification as in the likelihood frame-
work, the parameters & b;, and 6, are taken to be a priori
independent, ie., p(9, D, 9, %;) = p(Q)p(D)p(9)p(X;) and the
following prior distributions are used:

€ ~N(0,107%), b; ~N(0,1;), as also suggested in the lit-
erature [15,16], and 0, ~ Beta(a,p), is unimodal and con-
cave, when a>1, f>1 [3]. For the hyper parameters T,
the inverse-Gaussian prior /G(0.001, 0.001), and for «
and P, an improper uniform prior is used, as also sug-
gested by Gelman et al [16]. For more information on
Bayesian data analysis and MCMC methods see [20,21].

Note that the Beta-binomial distribution is a com-
pound distribution of the binomial and its conjugate
beta, which can be used to capture overdispersion in bi-
nomial data. Beta-binomial approximates the binomial
distribution arbitrarily well when its two non-negative
parameters, o and P, determining its shape, are suffi-
ciently larger. If one or both of these parameters are less
than 1, then the probability mass function will go to in-
finity near its boundaries, 0 and 1, and hence not con-
cave. As a result, the mode does not exist, leading to
computational problems in MCMC. For this reason, we
used the restriction o > 1, B > 1, such that the density is
always concave and unimodal whereby it is always finite
over the support [0, 1].

Spiegelhalter et al [22] suggest to use the so-called De-
viance Information Criterion for model com- parison in
Bayesian inference. Assume a probability model P (y|6).
The effective number of param- eters with respect to a
model with parameter © is given by pD{y, ®, é(y)} =Eg),
[-2 log p(y|0)] +2 log[py|°(»)}]. We shall usually drop

the arguments {y, ®, é(y)} from notation. Generally, we

take 6(y) =E(0]y), the posterior mean of the parameters.
For f (y) being a fully specified standardizing term that is
a function of the data alone, pD, defined as a ‘mean devi-
ance minus the deviance of the means, is given by pD =
E[D(8]y)] - D(E[6]y]), where D(6) = -2 log P (y|0) + 2 log
f () is the Bayesian deviance, used as a measure for
goodness of fit. The deviance information criterion
(DIC), defined as the classical estimate of fit plus twice
the effective number of parameters DIC=D(E[0]
y]) + 2pD = E[D(8]y)] + pD is used for model comparison.
According to this criterion, the model with the smallest
DIC is to be preferred. pD and DIC are easily computed
using 7 the available MCMC output by taking the pos-
terior mean of the deviance to obtain E[D(0]y)] and the
plug-in estimate of the deviance D(E[0|y]) using the
posterior means E[0]y] of the parameter 6. In non-
hierarchical models, pD approximates the effective num-
ber of parameters to be estimated. However, for hier-
archical models, pD is a measure of model complexity
instead of being merely the number of effective para-
meters to be estimated. For the best model preferred
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based on DIC, the important risk factors could be identi-
fied looking the credible intervals, considering whether
zero is in or outside of the credible interval.

We also attempted to fit the beta-binomial marginal
density, although it is not one commonly encountered in
software packages like WinBugs, where an observation
x; contributes a likelihood term L; We used the so-
called zero trick, a Poi(¢p) observation of zero has likeli-
hood exp(-¢), so if our observed data is a set of 0’s, and
¢; is set to—log(L;), we would obtain the correct likeli-
hood contribution [23]. This zero trick allows for arbi-
trary sampling distributions and is particularly suitable
when, say, dealing with truncated distributions. However,
our case studies showed that this method can be very in-
efficient and give a very high Monte Carlo error.

In terms of parameter interpretation, we would like to
refer back to the beneficial properties that come with
the conjugacy property. Indeed, because the 6, follow a
conjugate distribution, the interpretation of the para-
meters is the same as in a classical generalized linear
mixed model. Precisely, this means that the effect on the
regression parameters only comes from the normal ran-
dom effects in the linear predictor, a fact well documen-
ted. For a review, see, for example, Molenberghs and
Verbeke [17].

Results
The jimma infant growth study
We will analyze the binary BMI data. The following
model is assumed for the mean structure:

Y;; |b; ~ Bernoulli(rr;;), for subject i and measurement j,
and

logit (1) = & + boi + (byi + &) Ty + €,G; + E3Py;
+E€4Py; + E5By;
= &GiTy + &P Ty + Py Tij + EoBy; Ty,
(12)

where G; is a gender indicator, P;; and P,; are dummy
variables for place of residence corresponding to rural
and urban areas and using semi-urban areas as a refer-
ence. Ty, is the time point at which the / measurement
is taken for the i subject, which is centered at month
six. B;; denotes whether the i infant is breast fed or not
at time j. The random intercept b; ~ N (0, D).

The Infant Growth dataset is analyzed with a simple
logistic model, a beta-binomial model introducing only
an overdispersion parameter, a random-effects logistic
model that introduces a random-effects term to take the
repeated structure of the data into account, and finally
the combined model, which allows for both an overdis-
persion and a random effects term. Parameter estimates
are presented in Table 2.
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Clearly, the logistic-normal model is an important im-
provement, in terms of likelihood, relative to both the
ordinary logistic model and the beta-binomial. Moreover,
considering the combined model, there is a very strong
improvement in fit when the beta and normal random
effects are simultaneously allowed for. The overdispesion
term in the combined model is significant (p < 0.001),
implying the presence of considerable extra variability
due to the grouped nature of the data, which is beyond
what can be accommodated by the commonly used
logistic-normal model.

The logistic-normal model ignores the overdispersion
that results from the grouped nature of the data. On the
other hand, the beta-binomial model accommodates
overdispersion which is assumed independent, implying
independence between repeated measurements. Again,
this is not realistic and therefore the combined model is
the more viable candidate, supported further by the
aforementioned 9 likelihood comparison.

The combined suggests that the intercept, the time ef-
fect, main effects of place of residence and breastfeeding
are significant, which is also true for time interaction
with rural place of residence and breast feeding. How-
ever, main effect and slope of gender were not significant
implying that proportion of overweight seems to be in-
variant among male and female infants over time.
Infants living in rural, and urban areas are at lower risk
of overweight as compared to those in semi-urban ares
with (§3=-1.058, p=0.001), and (§, =-0.689, p=0.001),
respectively. Further, early initiation of breastfeeding has
a protective effect against the risk of overweight in late
infancy (§o=-0.167, p =0.001), as shown in Table 2.

Jimma longitudinal family survey of youth
We will now analyze current school attendance. For the
logit, consider the model: Y;; |b; ~ Bernoulli(m;;), with

logit(m;) = & + bi + £1A5 + §,G; + 3Py
+ &Py + Es Wi + &Ry, (13)
where A is the age of the i™ subject at the j” visit, G is the
gender of the i subject. Py; and P,; denote the two
dummy variables for place of residence of the i subject on
the j* visit, which are urban, semi-urban, and rural by
taking rural as a reference. Wj; indicates whether the i
adolescent is engaged in some work for the family or help
support on the j” visit. Finally, R; is the j™ round or mea-
surement occasion of the i’ subject, and b; ~ N (0, d).
Results from fitting all four models (with/without nor-
mal random effect; with/without beta random effect) can
be found in Table 3. Likelihood comparison of the beta-
binomial with the standard logistic model shows no im-
provement in fit, implying absence of strong evidence
for overdispersion. This can be noted from likelihood
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Table 2 Jimma Infant Growth Study
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Effect Parameter Logistic Beta-binomial
Estimate (s.e., p) Estimate (s.e., p)
Intercept &0 —1.896(0.128, 0.001) —0.448(1.099, 0.683)
Time &1 0.127(0.031, 0.001) 0.188(0.090, 0.037)
Gender:Male &2 0.027(0.025, 0.294) 0.029(0.039, 0.456)
Place rural &3 —0.602(0.029, 0.001) —0.949(0.501, 0.058)
Place urban &4 —0.376(0.037, 0.001) —0.628(0.381, 0.099)
Breast feeding &5 0.545(0.128, 0.001) 0.788(0.347, 0.023)
Slope Gender:Male &6 —0.003(0.006, 0.602) —0.007(0.011, 0.534)
Slope rural &7 0.018(0.007, 0.014) 0.029(0.020, 0.161)
Slope urban &8 0.016(0.009, 0.097) 0.026(0.022, 0.251)
Slope Breast feeding &9 —0.133(0.031, 0.001) —0.199(0.098, 0.041)
Std. dev. random intercept Vdo — —
Std. dev. random slope Vi — —
Ratio a/B — 1.827(1.622, 0.259)
—2log-likelihood 41,286 41,286
Effect Parameter Logistic-normal Combined
Estimate (s.e., p) Estimate (s.e., p)
Intercept &0 —2.741(0.186, 0.001) —2.661(0.215, 0.001)
Time &l 0.132(0.042, 0.002) 0.147(0.049, 0.003)
Gender:Male &2 0.010(0.054, 0.852) 0.020(0.064, 0.751)
Place rural &3 —0.908(0.064, 0.001) —1.058(0.082, 0.001)
Place urban &4 —0.581(0.082, 0.001) —0.689(0.099, 0.001)
Breast feeding &5 0.635(0.179, 0.001) 0.764(0.209, 0.001)
Slope Gender:Male &6 —0.003(0.010, 0.728) —0.005(0.012, 0.660)
Slope rural &7 —-0.015(0.011, 0.167) 0.024(0.014, 0.085)
Slope urban &8 —0.011(0.014, 0.432) 0.015(0.017, 0.377)
Slope Breast feeding &9 —0.149(0.044, 0.001) —0.167(0.049, 0.001)
Std. dev. random intercept Vdo 1.774(0.034, 0.001) 2.107(0.088, 0.001)
Std. dev. random slope Vi 0.193(0.007, 0.001) 0.237(0.014, 0.001)
Ratio o/ — 0.234(0.045, 0.001)
—2log-likelihood 37,000 36,971

Parameter estimates, standard errors, and p-values for the regression coefficients in (1) the logistic model, (2) the beta-binomial model, (3) the logistic-normal
model, and (4) the combined model. Estimation was done by maximum likelihood using numerical integration over the normal random effect, if present.

comparisons of the simple logistic and the beta-binomial
on the one hand, as well as the logistic-normal and the
combined, on the other. One can easily see, however,
that the commonly used logistic-normal and the com-
bined models are significant improvements over the
standard logistic model. We further observe, while the
logistic- normal model suggests a significant intercept
(p=0.045), that the same does not emerge when the
combined model is considered (p=0.099) implying the
beta random effect still has some impact on the p-values.
The logistic- normal model is adequate, in this case
study, for the combined model where there is no strong
evidence of overdispersion, as the overdispersion term is
not significant (p = 0.29)for these data with two repeated
measurements per subject, as mentioned in the earlier

sections. Further extension by adding random slope did
not improve the fit of both logistic-normal and the com-
bined models (details not shown).

Adolescents living in urban, and semi-urban areas
have higher school attendance than those living in rural
areas, with (§&=1.098, p=0.001), and (§3=1.092,
p=0.001), respectively. Gender is also significantly asso-
ciated with school attendance, where female adolescents
are lower (§,=-1.241, p=0.001). There is evidence that
school attendance increases in the second round visit
than that of the first (=0.398, p =0.010).

Comparison between estimation methods
For comparison with the previously applied estimation
method in the likelihood framework, we again apply the
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Table 3 Jimma Longitudinal Family Survey of Youth
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Effect Parameter Logistic Beta-binomial
Estimate (s.e., p) Estimate (s.e., p)
Intercept &0 1.171(0.626, 0.061) 1.155(0.702, 0.099)
Age &1 0.039(0.049, 0.414) 0.044(0.055, 0.421)
Place urban & 0.971(0.148, 0.001) 1.089(0.266, 0.001)
Place semi-urban &3 0.979(0.159, 0.001) 1.104(0.284, 0.001)
Gender:Female &4 —1.111(0.123, 0.001) —1.226(0.237, 0.001)
Work &5 0.134(0.122, 0.274) 0.146(0.138, 0.288)
Round &6 0.341(0.141, 0.016) 0.390(0.178, 0.029)
Std. dev. random effect Vd — —
Ratio a/p — 0.009(0.014, 0.528)
—2log-likelihood 1987.7 19874
Effect Parameter Logistic-normal Combined
Estimate (s.e., p) Estimate (s.e., p)
Intercept &0 1.443(0.719, 0.045) 1.463(0.888, 0.099)
Age &1 0.046(0.056, 0.408) 0.058(0.070, 0.408)
Place urban & 1.098(0.178, 0.001) 1.379(0.393, 0.001)
Place semi-urban & 1.092(0.189, 0.001) 1.339(0.368, 0.001)
Gender:Female &4 —1.241(0.147, 0.001) —1.499(0.339, 0.001)
Work &5 0.153(0.144, 0.287) 0.189(0.182, 0.296)
Round &6 0.398(0.155, 0.010) 0.519(0.237, 0.028)
Std. dev. random effect Vd 1.138(0.188, 0.001) 1.342(0.318, 0.001)
Ratio a/pB — 0.013(0.013, 0.293)
—2log-likelihood 19729 19721

Parameter estimates, standard errors, and p-values for the regression coefficients in (1) the logistic model, (2) the beta-binomial model, (3) the logistic-normal

model, and (4) the combined model.

Estimation was done by maximum likelihood using numerical integration over the normal random effect, if present.

same models to the two surveys, but now in the Bayesian
framework. After generating 70,000 MCMC samples for
the combined, and 50,000 MCMC samples for logistic-
normal, beta- binomial, and simple logistic, the first 10,000
samples are discarded and treated as so-called burn-in
samples. The remaining samples are used to summarize the
posterior estimates. Two distinct chains were used to check
sensitivity to the initial values, and convergence was met.
Convergence was checked using the Gelman-Rubin diag-
nostic as well as by visual inspection of the trace and QQ
plots [24].

The posterior summaries of logistic, beta-binomial,
logistic-normal, and combined models are given in
Tables 4 and 5 for the Jimma Infants Growth dataset
and the Jimma Longitudinal Family Survey of Youth, re-
spectively. The parameter estimates are fairly similar
with what was obtained previously in the likelihood ap-
proach in both cases, except for differences in the case
of the beta-binomial for the Jimma Infants data in
Table 4 when compared with Table 2.

In terms of significance of the parameters, the same con-
clusion is reached for the two case studies in both

approaches, except that the beta-binomial for the intercept
and time effects in Jimma infants study shows significance
in the likelihood framework as given in Section (The jimma
infant growth study), while the same does not emerge from
the Bayesian case, as observed from the 95% credible inte-
val which include zero for these effects. We compared the
various models using the DIC criterion. For both studies,
there is a significant reduction in the DIC of the logistic-
normal and the beta-binomial, as compared to the simple
logistic. We observe a rather high degree of model im-
provement by combining beta and normal random effects
simultaneously, to allow for both the overdispersion and
the data hierarchy. Moreover, the logistic and the beta-
binomial ignore the correlation stemming from the data
hierarchy on the one hand, and the logistic-normal does
not allow for the overdispersion, on the other, which
altogether make the combined model the preferred one.
According to Spiegelhalter et al [22], in comparing
complex hierarchical models where the number of para-
meters are not clearly defined, pD is the difference be-
tween the posterior mean of the deviance and the
deviance at the posterior means of the parameters of



Kassahun et al. Archives of Public Health 2012, 70:7
http://www.archpublichealth.com/content/70/1/7

Table 4 Jimma Infant Growth Study
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Effect Logistic Beta-binomial
Mean(s.d.) Mean(s.d.)
Intercept &0 —1.894(0.123) —1.486(1.488)
Time &1 0.126(0.031) 0.155(0.207)
Gender:Male &2 0.027(0.026) 0.003(0.066)
Place rural &3 —0.602(0.029) —2.486(1.290)
Place urban &4 -0.377(0.037) —1.973(1.210)
Breast feeding &5 0.543(0.123) 1.126(0.294)
Slope Gender:Male &6 —0.003(0.006) —0.015(0.016)
Slope rural &7 0.018(0.007) 0.160(0.178)
Slope urban &8 0.015(0.009) 0.1610.182)
Slope Breast feeding &9 —0.132(0.030) —0.289(0.097)
Std. dev. random intercept Vdo — —
Std. dev. random slope N — —
Ratio a/pB — 3.222(0.524)
DiC 41,3100 40,390.0
pD 99 25110
Effect Logistic-normal Combined
Mean(s.d.) Mean(s.d.)
Intercept & —2.773(0.191) —2.755(0.258)
Time & 0.137(0.042) 0.169(0.062)
GenderMale & 0.020(0.054) 0.026(0.069)
Place rural & —0.915(0.065) —1.115(0.085)
Place urban &y —0.606(0.083) —0.749(0.103)
Breastfeeding &s 0.666(0.185) 0.903(0.253)
Slope Gender:Male & —0.003(0.010) —0.006(0.012)
Slope rural & 0.015(0.011) 0.026(0.015)
Slope urban & 0.011(0.014) 0.017(0.018)
Slope Breastfeeding & —0.144(0.041) —0.192(0.061)
Std. dev. random intercept Vdo 1.783(0.035) 2.212(0.074)
Std. dev. random slope N 0.193(0.007) 0.250(0.013)
Ratio a/pB — 0.288(0.031)
DIC 33,605.1 33,3776
pD 5400.7 62183

Estimated posterior mean and standard deviation in (1) the logistic model, (2) the beta-binomial model, (3) the logistic-normal model, and (4) the combined

model.

interest, not only measures the effective number of para-
meters but also the model complexity. These authors
further noted that the contribution pD; of each observa-
tion i turned out its leverage, defined as the relative in-
fluence that each observation has on its own fitted value.
for y; conditionally independent given 0, pD;, shows its
interpretation as the difficulty in estimating 6 with y,.
This shows the connection between the sample size, the
parameters to be estimated, and the pD. The Jimma
infants (n=7969) and the Jimma Longitudinal family
survey (n=2100) data have large number of subjects
followed longitudinally, where each subject was mea-
sured seven and two times, respectively. Due to these

reasons, the pD values, as presented in Tables 4 and 5,
appeared to be larger as the by-product of the MCMC
estimation to obtain leverage of each observation.

Unlike the Jimma infants study in Table 4, pD of the
combined model for the Jimma Longitudinal Family Survey
of Youth in Table 5, (D =211.9), is lower than that of the
logistic-normal (pD=2415). This implies that, for the
Jimma Longitudinal Family Survey of Youth, the combined
model is less complex to fit than the logistic-normal, al-
though, this is what we don’t usually expect, as the com-
bined model seems more complex, since it includes both
the beta and the normal random effects, while, the logistic-
normal including only the normal random-effects.
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Table 5 Jimma Longitudinal Family Survey of Youth

Effect Logistic Beta-binomial

Mean(s.d.) Mean(s.d.)
Intercept & 85(0.624) 51(0.731)
Age & 0.039(0.049) 0.047(0.057)
Place urban & 0.977(0.148) 34(0.183)
Place semi-urban & 0.987(0.161) 1.161(0.202)
Gender:Female & -1.113(0.123) —1.266(0.148)
Work & 33(0.122) 0.154(0.140)
Round & 0.343(0.142) 0.404(0.165)
Std. dev. random effect  v/d — —
Ratio a/B — 0.0111(0.0029)
DIC 2002.0 2001.0
pD 6.97 13.77
Effect Logistic-normal Combined

Mean(s.d.) Mean(s.d.)
Intercept & 1.452(0.732) 1.272(0.953)
Age & 0.047(0.057) 0.077(0.078)
Place urban & 07(0.180) 1.427(0.270)
Place semi-urban & .104(0.192) 1.382(0.269)
Gender:Female & —1.247(0.149) —1.528(0.214)
Work & 0.155(0.145) 0.199(0.184)
Round & 0.401(0.157) 0.521(0.203)
Std. dev. random effect Vd 1.148(0.203) 1.417(0.266)
Ratio a/pB — 0.013(0.003)
DIC 1943.0 1915.0
pD 2415 2119

Estimated posterior mean and standard deviation in (1) the logistic model, (2)
the beta-binomial model, (3) the logistic-normal model, and (4) the combined
model.

However, for these specific data, this resulted likely because
there is less conflict between the specific data set, and the
prior distributions which could be associated to the conju-
gacy of the beta random effects, as well as the peculiar data
features including number of subjects and repeated mea-
surements per subject.

The SAS and WinBugs codes used for analysis of the
data sets are given in the Appendix.

Discussion

Analysis of the case studies show that, in the presence of
overdispersion, and clustering, the combined model
results in improvement in model fit, which is similar to
the finding in Molenberghs et al [9].

This study revealed that early breastfeeding lowers the
risk of overweight at late infancy. This finding is in line
with Bergman et al [10], who showed that breastfed
infants had lower BMI after 3 months from birth than
bottle-fed infants, though the BMIs at birth were nearly
identical in both groups. Owen et al [11], who reviewed
sixty-one studies, states that initial breastfeeding
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protects against obesity in later life, although the precise
magnitude of the association remains unclear. Unlike
Owen et al [11], the present study showed that, infants
in the breastfed group were fatter, at birth, as compared
to those who were not breastfed. This is likely because
of the unmeasured maternal history, such as maternal
BMI, and socio-cultural aspects, which are considered to
be the risk factors of overweight in children [25]. In
addition, it is a common practice in the study area that
mothers provide additional liquid or solid food starting
from early infancy, in addition to breastfeeding. This is
probably because they believe that a child with more
weight is considered as healthy, which is likely to have
its own impact on the BMI in the early infancy. In this
study, it is also shown that place of residence does not have
a long term effect in the risk of overweight, instead it is the
mode of feeding which is more important. The baseline dif-
ferences observed in the risk of overweight among infants
living in urban, semi-urban areas might be attributable to
other family related factors like, social class, family income,
educational level of the parents, and other socio-cultural
variables, which are indicated to affect the nutrition of
young children and women in Ethiopia [12].

In investigating school attendance among adolescents,
this study showed that, girls have a lower rate of current
school attendance than boys, which is a common situ-
ation in most Sub-Saharan African Countries. According
to World Health Organization [13], there is a clear gen-
der gap observed in primary or secondary school enroll-
ment when the Gender Parity Index (GPI), the ratio of
female to male enrollment, is considered. Between the
years 1999 and 2003, GPI was found to be 0.7, indicating
that there were only 7 girls enrolled at primary schools
for every 10 boys. This gender gap increases with in-
creasing level of education. This study also showed that
adolescents in urban and semi-urban areas have higher
rate of than those in the rural areas, which is in line with
report of World Bank [14], where it was stated that
among children in rural areas with a school in the neigh-
borhood, less than 44% registered for school; in urban
areas, the percentage is much higher up to 86%. Accord-
ing to the report, distance to the nearest school, house-
hold characteristics, and learning environment were
among the possible reasons of the gap in the school
attendance.

Conclusion

We have presented a model which integrates normal and
beta random effects into a single model, termed the com-
bined model. Our work builds upon that of Molenberghs et
al [9], who brought together normal random effects to in-
duce association between repeated binary and binomial
data, and a beta-binomial distributed random factor in the
log-linear predictor to fine tune the overdispersion.
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Maximum likelihood estimation was considered by in-
tegrating over the random effects using the SAS proced-
ure NLMIXED.

Further, Bayesian inference has been applied. Prior in-
formation about the parameters induces correlation,
which then leads to reduced effective dimensionality al-
though the reduction depends on the available data [22].
Complexity reflects the difficulty in fit and hence it
seems reasonable that the measure of complexity may
depend on both the prior information concerning the
parameters under scrutiny and the specific data that are
observed. This can be elucidated from the Jimma Longi-
tudinal Family Survey of Youth result, where the com-
bined model is less complex in fit, which likely results
from the conjugacy of the beta random effect and the
number of subjects as well as the repeated measure-
ments per subject.

Future studies on early growth of children could bene-
fit from careful measurement of a wider range of poten-
tial confounders of overweight.

Further efforts should be made to fill the gap in school
attendance among boys and girls, as well as, urban and
rural areas by focusing on the potential causes, such as
lagging experience in primary schooling, which is then
exacerbated by such factors as the practice of early mar-
riage among Ethiopian women, families reluctance to in-
vest in girls education. Situating schools closer to
childrens homes in rural areas, and improve the quality
of the services is necessary [14]. Longitudinal studies
with better number of repeated measurements per sub-
ject should be conducted to get better insight on the
trends of school enrollment, survival of adolescents.

Appendix

SAS Implementation

This section shows a SAS program, using the procedure
NLMIXED, for the combined model.

Jimma infants growth study

proc nlmixed data = infant noad qpoints = 10;

title 'Combined Model-Jimma infants with const = beta/
alpha';

parms Beta_0=-3.23 Beta_1 =0.0602 beta_2 = 0.0402
Beta_3 =-0.8369 Beta_4 = -0.552

Beta_5 =1.7266 Beta_6 = -0.003 Beta_7 = -0.0262
Beta_8=-0.0184 Beta_9 =-0.1584

sd1l =1.3662 sd2 =0.2576 const = 0.0944;
eta=Beta_0+bl+ (Beta_1+b2)

*time + Beta_2*sex + Beta_3*(place =1) + Beta_4*
(place =2)

+Beta_5*(Bf) + Beta_6*(sex)*time + Beta_7*time*
(place = 1) + Beta_8*time*(place = 2)

+ Beta_9*time*(BF);
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expeta = exp(eta);

Il = -log(1 + const) + BMIBIN*eta - BMIBIN*log

(1 + expeta)

+ (1-BMIBIN)*log((1-expeta/(1 + expeta)) + const);
model BMIBIN ~ general(ll);

random bl b2 ~ normal([0,0],[sd1%**2,0,sd2**2])
subject = id;

run;

The Jimma Longitudinal Family Survey of Youth

proc nlmixed data = ado noad gpoints =10 ;

title 'Combined Model-Jimma youth with const = beta/
alpha’;

title3 'Retriction beta/alpha = const;

parms Beta_0 =1.1652 Beta_1 =0.04351 Beta_2=1.0911
Beta_3=1.1051

Beta_5=-1.2249 Beta_6 =0.1471 Beta_7 =0.3903

const =0.05 sd = 0.5;

eta = Beta_0 + Beta_1*age + Beta_2*(typplace=1)

+ Beta_3*(typplace = 2) + Beta_5*currwork + Beta_6*sex
+Beta_7*round + b1;

expeta = exp(eta);

Il = -log(1 + const) + currscho*eta - currscho*log

(1 + expeta)

+ (1-currscho)*log((1-expeta/(1 + expeta)) + const);
model currscho ~ general(ll);

random b1l ~ normal(0,sd*sd) subject =id ;

run;

WinBugs Implementation
This section presents a WinBugs program for the com-
bined model.

Jimma infants growth study

model {

for (i in 1:49112) {

BMIBIN(i] ~ dbern(pli])

pli] < -kappali]*thetal[i]

theta[i] ~ dbeta(a,b)

logit(kappali]) < — alphaO + (s[ID[i]] + alphal)*TIME[i]
+alpha2*SEX[i] + alpha3*RUR[i] + alpha4*URB

[i] + alpha5*BF([i]

+alpha6 * SEX[i]*TIMEJi] + alpha7 * RUR[i] *TIME[i]
+ alpha8*URBJ[i]*TIME]i] + alpha9*BF[i]*TIME]i]

+ u[ID[i]]

}

for (j in 1:7969) {

u[j] ~ dnorm(0.0,taul)

s[jl ~ dnorm(0.0,tau2)

}

a ~ dunif(3,5)

b ~ dunif(1.1,1.5)
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c<-b/a

alpha0 ~ dnorm(0.0,1.0E-6)
alphal ~ dnorm(0.0,1.0E-6)
alpha2 ~ dnorm(0.0,1.0E-6)
alpha3 ~ dnorm(0.0,1.0E-6)
alpha4 ~ dnorm(0.0,1.0E-6)
alpha5 ~ dnorm(0.0,1.0E-6)
alpha6 ~ dnorm(0.0,1.0E-6)
alpha7 ~ dnorm(0.0,1.0E-6)
alpha8 ~ dnorm(0.0,1.0E-6)
alpha9 ~ dnorm(0.0,1.0E-6)
taul ~ dgamma(0.001,0.001)
tau2 ~ dgamma(0.001,0.001)
sd1l < -sqrt(1/taul)

sd2 < —sqrt(1/tau2)

}

The Jimma Longitudinal Family Survey of Youth

Model {

for (i in 1:3815) {

SCHOYVi] ~ dbern(p[i])

pli] < —theta[i]*kappal[i]

thetali] ~ dbeta(a,b)

logit(kappali]) < — alpha0 + alphal*AGE

[i] + alpha2*URBYi]

+alpha3*SURBi] + alphad*WORK(i] + alpha5 * SEX[i]
+ alpha6 * ROUNDVi] + u[ID[i]]

}

for (j in 1:1956) {

ufj] ~ dnorm(0,tau)

}

a ~ dunif(110,210)

b ~ dunif(1.1,2.2)

c< -b/a

alpha0 ~ dnorm
alphal ~ dnorm
alpha2 ~ dnorm
alpha3 ~ dnorm
alpha4 ~ dnorm(0.0,1.0E-6)
alpha5 ~ dnorm(0.0,1.0E-6)
alpha6 ~ dnorm(0.0,1.0E-6)
tau ~ dgamma(0.001,0.001)
sd < —1/sqrt(tau)

}

0.0,1.0E-6)
0.0,1.0E-6)
0.0,1.0E-6)
0.0,1.0E-6)

= = = = = =
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