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Abstract

Wolisso St. Luke Catholic hospital, southwest Ethiopia.

malnutrition were not significant.

Background: In developing countries about 3.5% of children aged 0-5 years are victims of severe acute malnutrition
(SAM). Once the morbidity has developed the cure process takes variable period depending on various factors.
Knowledge of time-to-cure from SAM will enable health care providers to plan resources and monitor the progress of
cases with SAM. The current analysis presents modeling time-to-cure from SAM starting from the day of diagnosis in

Methods: With the aim of coming up with appropriate survival (time-to-event) model that describes the SAM
dataset, various parametric clustered time-to-event (frailty) models were compared. Frailty model, which is an
extension of the proportional hazards Cox survival model, was used to analyze time-to-cure from SAM. Kebeles
(villages) of the children were considered as the clustering variable in all the models. We used exponential, weibull
and log-logistic as baseline hazard functions and the gamma as well as inverse Gaussian for the frailty distributions
and then based on AIC criteria, all models were compared for their performance.

Results: The median time-to-cure from SAM cases was 14 days with the maximum of 63 days of which about 83%
were cured. The log-logistic model with inverse Gaussian frailty has the minimum AIC value among the models
compared. The clustering effect was significant in modeling time-to-cure from SAM. The results showed that age of a
child and co-infection were the determinant prognostic factors for SAM, but sex of the child and the type of

Conclusions: The log-logistic with inverse Gaussian frailty model described the SAM dataset better than other
distributions used in this study. There is heterogeneity between the kebeles in the time-to-cure from SAM, indicating
that one needs to account for this clustering variable using appropriate clustered time-to-event frailty models.

Keywords: Severe acute malnutrition, Parametric frailty, Accelerated failure time model

Background

Malnutrition is a common cause of morbidity and mor-
tality in developing countries [1]. It is a risk factor for
over 50% of the 11 million annual childhood deaths [2].
Severe acute malnutrition (SAM) is defined as a very low
weight for height less than 70% NCHS median or less
than 115 mm of MUAC [3]. In developing countries, about
3.5% of children aged 0-5 years are suffer from SAM [4],
which is the most important nutritional disease because
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of its high prevalence and relationship with child mortal-
ity [5]. Currently, there are a number of studies on time
of recovery from acute malnutrition in various parts of
the world. Survival data is a term used for describing data
that measure the time to a given event of interest. The
term survival data is often used for describing data that
measure the time to the occurrence of a given event of
interest. The event of interest can be seen as a transi-
tion from one state to another. In this study, the event
of interest was the time-to-cure from SAM from the day
of diagnosis. One of the major aim of this analysis was
to model the time-to-cure from SAM among less than
five year inpatient children in Wolisso St. Luke Catholic
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hospital and to compare the efficiency of various para-
metric frailty models using the same dataset. The classical
model for this kind of data is the proportional hazards
model popularized by Cox [6]. However, correct inference
based on Cox’s model needs identically and independently
distributed samples. One of the reasons why this model
is so popular is the ease with which technical difficul-
ties such as censoring and truncation are handled. This is
due to the appealing interpretation of the hazard as a risk
that changes over time. Naturally, the concept allows for
entering covariates to describe their influence and model
different levels of risk for different subgroups. Nonethe-
less, subjects may be exposed to different risk levels, even
after controlling for known risk factors; as some relevant
covariates were often unavailable to the researcher or even
unknown (univariate frailty case). The study population
may also be divided into clusters so that subjects from the
same cluster behave more cohesively than subjects from
different clusters (multivariate frailty case). The frailty
model, introduced in the statistical literature by Vaupel
et al. [7], and discussed in details [8-10], accounts for
heterogeneity in baseline. It is an extension of the propor-
tional hazards of Cox’s model in which the hazard func-
tion depends upon an unobservable random quantity, the
so-called frailty that acts multiplicatively on it. Study sub-
jects (children) in this study came from clustered commu-
nity and hence clustered child survival data may be cor-
related at the Kebele level. In this research, shared frailty
models were explored assuming that children within the
same cluster (kebele) share similar risk factors, which will
take care of the frailty term at kebele level. This model is a
conditional independence model where the frailty is com-
mon to all individuals in a cluster, and therefore respon-
sible for creating dependence between event times. This
is because ignoring the full dependence among observa-
tions may lead to standard errors that are understated and
parameter estimates that are both biased and inconsistent
[11]. Estimation of the frailty model can be parametric
or semi-parametric. In the first case, a parametric density
is assumed for the event times, resulting in a paramet-
ric baseline hazard function. Estimation is then conducted
by maximizing the marginal log-likelihood function. In
the second case, the baseline hazard is left unspecified
and more complex techniques are available to approach
that situation [12]. Even though semi-parametric estima-
tion offers more flexibility, the parametric estimation will
be more powerful if the form of the baseline hazard is
somehow known in advance [13]. In this study, paramet-
ric frailty models were used to investigate the relationship
between different potential covariates (sex, age, type of
malnutrition and co-infection) and time to cure from SAM
for clustered survival data with random right censoring.
The choice of distribution for the hazard is very impor-
tant than the choice of frailty distribution [14]. Hence, in
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this research exponential, weibull and log-logistic hazard
functions were used and compared for their efficiencies.
Regarding the frailty distribution, we assumed gamma
and inverse Gaussian distributions. For comparison of
different distributions, the AIC criteria were used, but
for comparing nested models, likelihood ratio test were
used.

Methods

Study sample and setting

The data set used in this study were obtained from
Wolisso St. Luke catholic hospital, Wolisso, south west
Ethiopia. Children aged under five, having marasmus
and/or kwashiorkor, diagnosed for severe acute malnutri-
tion (SAM) according to the protocol for management of
SAM [15] and admitted to inpatient, and started treat-
ment during the period January 1, 2010 to January 31,
2012 were eligible for the analysis. A total of 929 chil-
dren who came from 280 kebeles around Wolisso district
were considered. Kebeles that contribute only a child were
omitted since the shared frailty model should be done on
at least two children per kebele. Therefore a total of 855
children with severe acute malnutrition from 206 kebeles
were considered.

The response variable time-to-cure from SAM were
obtained by calculating the difference (in day) from the
start of treatment until the child were cured (recovered)
or censored. Cured children according to the SAM treat-
ment protocol are defined as children who have weight
for height >85% and no bilateral edema. Children were
considered to be cured and discharged, which is our
event of interest, if they fulfilled the discharging criteria
for SAM [15]. However, the time-to-cure were censored
for those children transferred to other hospital, dropped
treatment, died, did not cure at January 31, 2012 (at the
end of study). The following variables were considered
for their influence on the time-to-cure from SAM; sex,
age, type of malnutrition and co-infection. For age we used
six categories; 0—5 months, 6—11 months, 12-23 months,
24-35 months, 36-47 months and 48-59 months.
Types of malnutrition were categorised as Marasmus,
Kwashiorkor and Marasmic-kwashiorkor. Co-infection
was categorized based on whether the child has co-
infection such as malaria, anemia, pneumonia, measles
and giardiasis or not.

Shared frailty model

Conditional on the random term, called the frailty
denoted by u;, the survival time in cluster i (1 < i < n)
are assumed to be independent, the proportional hazard
model assumes

hij(¢/Xij, wi) = exp(B'Xij + ui)ho(t)
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Whereas an alternative if the proportional hazards
assumption does not hold is the accelerated failure time
frailty model which assumes

hij () X, u;) = exp(B'Xij + uiho(exp(B' Xy + ui)t)

Where i indicates the i cluster, j indicates the j indi-
vidual in the i cluster, /1o (¢) is the baseline hazard, ; the
random term for all subjects in cluster i, Xj; is the vector
of covariates for subject j in cluster i, and § the vector of
regression coefficients.

We assumed that Z (where Z = exp(u;)) has the gamma
or inverse Gaussian distribution so that the hazard func-
tion depends upon this frailty that acts multiplicatively on
it. The main assumption of a shared frailty model is that
all individuals in cluster i share the same value of frailty
Z; (i = 1,...,n), and that is why the model is called
the shared frailty model. The survival time is assumed to
be conditionally independent with respect to the shared
(common survival times) frailty. This shared frailty is the
cause of dependence between survival time within the
clusters.

In order to investigate the effect of the candidate covari-
ates on the time-to-cure from SAM, we first did a univari-
able analysis by fitting a separate model for each candidate
covariates. Covariates that were found to be significant in
the univariable analysis were included in the multivariable
analysis.

The multivariable survival analysis in the study was
done by assuming the exponential, weibull and log-logistic
distributions for the baseline hazard function; and the
gamma and inverse Gaussian frailty distributions. It was
performed using the three most significant covariates in
the univariable analysis namely age, type of malnutrition
and co-infection. However, we excluded sex which was not
significant in univariable analysis.

Results

Of all 855 malnourished patients, 711(83.16%) were cured
and the median cure time from SAM was 14 days, while
the minimum and the maximum cure times observed
were 7 and 63 days, respectively (Table 1).

Using all the multivariable frailty models, the covari-
ate co-infection was significant, indicating that it was the
most important prognostic factor for the time-to-cure
from SAM. Age group was significant in the three mod-
els namely, weibull-gamma, weibull-inverse Gaussian and
log-logistic-inverse Gaussian frailty models. Type of mal-
nutrition was not a significant factor for time-to-cure
from SAM using all the models. The variance of the
random effect (0) was significant for the weibull and
log-logistic baseline frailty models but not significant
for the exponential baseline frailty models. It was high-
est when we assume the inverse Gaussian distribution
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Table 1 Descriptive summaries of patient’s characteristics
diagnosed for SAM

Characteristic No. of Cured Median (95% Cl)
patients (%) (days)

Sex Female 421 348(82.66) 15 (14,16)
Male 434 363(83.64) 14 (13,15)

Agegroup 0-5months 61 46(754) 13 (12,17)
6-11 months 196 152(775) 15 (13,17)
12-23 months 281 242(86.1) 16 (15,17)
24-35 months 152 128(84.2) 14 (13,17)
36-47 months 82 77(93.9) 13 (11,15)
48-49 months 83 66(79.5) 13 (11,16)

Type of Marasmus 399 314(78.7) 15 (14,17)

Malnutrition
Kwashiorkor 382 342(89.53) 14 (13,15)
Marasmic- 74 55(74.3) 15 (14,20)
kwashiorkor

Co-infection  No 376 335(89.1) 13 (12,14)
Yes 479 376(78.5) 17 (16,18)

Total 855 711(83.16) 14 (14,15)

(0 = 0.21) followed by the gamma distribution (0 =
0.172) with the log-logistic baseline hazard function. This
term was again higher when we assume the inverse Gaus-
sian frailty distribution (¢ = 0.169) than the gamma
distribution (0§ = 0.163) for the weibull baseline hazard
function. The Kendall’s tau (r) was higher for the higher
0 values. Accordingly the dependence within the clusters
for the log-logistic-inverse Gaussian frailty model (v =
0.081) was the maximum followed by the log-logistic-
gamma frailty model (r = 0.079). The AIC value of
the log-logistic-inverse Gaussian model 4941.63, was the
minimum among all the other AIC values of the models
indicating that it was the most efficient model to describe
the SAM dataset using various parametric frailty models
(Table 2).

Analysis based on log-logistic-inverse Gaussian frailty
model showed that age group of the children and presence
of co-infection were significant. That is the confidence

Table 2 AIC values of the parametric frailty models

Baseline hazard function Frailty distribution AIC
Exponential Gamma 5534.547
Inverse-Gaussian 5535.706
Weibull Gamma 5052.727
Inverse-Gaussian 5014.042
Log-logistic Gamma 4997.691
Inverse-Gaussian 4941.630
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interval of acceleration factors(¢) for both Age group and
co-infection did not include 1 (Table 3).

Children with age group between 12 and 23 months
had significantly different curing time than the refer-
ence groups (aged 0—-5months) with acceleration factor
(¢ = 1.18) and confidence interval (1.014, 1.374), did not
includes 1, at 5% level of significance. An acceleration fac-
tor of greater than 1 indicates prolonging the time-to-cure
from SAM. Therefore, children aged between 12 and 23
months had prolonged cure time by a factor of 1.18 than
the reference groups. But the other age groups were not
significantly different from the baseline age group at 5%
level of significance. The confidence interval of the accel-
eration factor of co-infection was (1.093, 1.268), did not
include 1, indicating co-infection is also significant prog-
nostic factor for time-to-cure from SAM. It prolonged
curing time by a factor of (¢ = 1.177) at 5% level of
significance.

The value of the shape parameter in the log-logistic-
inverse Gaussian frailty model was (p = 3.56). This value
greater than unity indicates that the shape of hazard func-
tion is unimodal, i.e., it increases up to some time and then
decreases. The variability (heterogeneity) in the popula-
tion of clusters (kebeles) estimated by our working model
was 8 = 0.21, and the dependence within clusters was
about T = 8.1%.

The predicted frailty values increases with range of
0.731 to 1.272 with increasing the median time of the
cluster on log-logistic- inverse Gaussian frailty model
(Figure 1). That is, these values are lower for lower
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Figure 1 Prediction of frailties for the SAM dataset as given by
the parametric log-logistic-inverse Gaussian frailty model.

values of event times and higher for higher value of event
times. The median value of the frailty distribution is
around 1.

The hazard functions given the 25, 50% and 75 quar-
tiles of frailty distribution (Z = 0.837, Z = 1 and
Z = 1.167, respectively) were plotted for the log-logistic-
inverse Gaussian frailty model (Figure 2). The parameter
estimates obtained by maximizing the likelihood of the log
logistic-inverse Gaussian frailty model were A = 1.306e —
4, p = 3.56 (S.E = 0.134) and 6 = 0.21 (S.E = 0.055).

Table 3 Multivariable analysis using the log-logistic-inverse Gaussian frailty model

Covariates Coefficients S.E. ¢ 95% Cl of ¢
Intercept 2.542 0.072 12711 (11.030, 14.648)*
Age group 0-5 months Ref 1.000
6-11 months 0.036 0.079 1.037 (0.888, 1.210)
12-23 months 0.166 0.078 1.180 (1.014, 1.374)*
34-35 months 0.064 0.085 1.066 (0.903, 1.258)
36-47 months -0.022 0.092 0.979 (0.817,1.173)
48-59 months 0.028 0.094 1.029 (0.856, 1.236)
Type of Malnutrition Marasmus Ref 1.000
Kwashiorkor -0.045 0.044 0.956 (0.876, 1.043)
Marasmic-kwashiorkor 0.014 0.070 1.014 (0.884, 1.165)
Co-infection No Ref 1.000
Yes 0.163 0.038 1177 (1.093, 1.268)*
log(scale) =-1.268 (0.031)* T = 0.081
6 = 021(S.E = 0.055)* A = 1.306e~*
p =356(SE =0.134) AlIC = 4941.630

Source: Wolisso St. Luke Catholic hospital, Ethiopia; from September 1, 2010 to January 31, 2012. *p < 0.05 was statistically significant. ¢ = Acceleration factor, 6 =
Variance of the random effect, = Kendall's tau, AIC = Akaike’s Information Criteria, Cl = confidence interval, S.E = standard error, Ref = Reference, A = scale, p = shape.
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Figure 2 Conditional hazard rates of the log-logistic- inverse
Gaussian frailty model for the SAM dataset.

The conditional hazard functions given the 75 quartile
frailty values was greater, followed by the conditional haz-
ard functions given by the 50 (median) and 257 quartile
frailty values of the clusters respectively. From this what
we can observe is that the more frail groups (Z > 1)
were more likely to get events earlier (cure earlier) and
the less frail groups (Z < 1) had prolonged cure time.
All the conditional hazard functions were almost equal at
the beginning time (¢ = 0). But the gap widens through
time, specifically at mid time. The pattern of all the hazard
function is unimodal (increases up to some point and then
decreases) as the shape parameter for the baseline hazard
function is greater than unity (p = 3.56).

To check the adequacy of our baseline hazard, the
exponential has been plotted by the cumulative hazard
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function with time-to-cure from SAM. Similarly, the
weibull has been plotted by the logarithm cumulative
hazard function with the logarithm of time-to-cure from
SAM and log-logistic has been plotted by the logarithm of
the failure odds with the logarithm of time-to-cure from
SAM (Figure 3). The plot of log-logistic was more linear
than the other plots, though only few observations were
scattered at the beginning time. The patterns suggested
that the log-logistic hazard function was appropriate in
the model.

The Cox-Snell residuals together with their cumula-
tive hazard function were obtained by fitting the expo-
nential, weibull and log-logistic models to our dataset,
via maximum likelihood estimation (Figure 4). The plots
showed that the Cox-Snell residuals fitted to assess the
log-logistic model for the dataset were nearest to the line
through the origin as compared to the other models, again
indicating that this model described the SAM dataset
well.

A quantile-quantile or q-q plot was made to check if the
accelerated failure time provided an adequate fit to the
data using two different groups of population. We checked
the adequacy of the accelerated failure-time model by
comparing the significantly different age groups (children
in the age group 0—5 months and 12—-24 months); as well
as the co-infected and non co-infected groups of patients
(Figure 5). The figures appear to be approximately linear
for both covariates age group and co-infection with slopes
equivalent to the acceleration factors 1.180 and 1.177,
respectively. Therefore the log-logistic baseline model
used for time-to-cure from SAM was accelerated failure
time model.
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Figure 4 Cox-Snell residuals obtained by fitting exponential, weibull and log-logistic models to the SAM dataset.

Discussion

The main aim of the study was to model time-to-cure
from SAM using appropriate survival model among var-
ious parametric frailty models. The comparison of dis-
tributions of the models was performed using the AIC
criteria, where a model with minimum AIC is accepted
to be the best [13]. Accordingly, the log-logistic-inverse
Gaussian frailty model which has AIC value of 4941.63
was the most appropriate model to describe the SAM
dataset.

This study also showed that there was a clustering
(frailty) effect on modeling time-to-cure from SAM which
might be due to the heterogeneity in kebele from which
the child came, assuming children coming from the
same kebele share similar risk factors related to SAM.

Therefore, it was important considering the clustering
effect in modeling the hazard function. Clusters with min-
imum median time have smaller frailties, so that these
clusters are predicted to have a high hazard [9], more
probable to cure in this case. Our data demonstrated that
the nuisance (frailty) terms modified the hazard function,
and therefore the the hazard function was evaluated con-
ditionally on this effect. Kebeles that frail more were more
likely to cure than the less frail kebeles (since the event is
positive).

The inverse Gaussian frailty generates very strong
dependence at mid time [16]. According to the conditional
hazard function given the 25%, 50 and 75 quantile
frailty values, the hazard function depends on these val-
ues especially at the mid time (Figure 1). This frailty
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distribution introduced as an alternative to the gamma
distribution [17] was better in this dataset compared to
the gamma frailty distribution. The heterogeneity in the
kebeles was estimated to be 6 = 0.21, and the depen-
dence within clusters is about r = 8.1%. These values were
the maximum among the variance of the random effects
and the Kendall’s tau of all the models, which consolidates
the idea that the better the model, the less unobserved
heterogeneity will be [18].

Nonetheless, the most acknowledged parametric model
is the weibull, which allows the proportional hazards and
accelerated life time model [8]; the SAM data set was
best described by the log-logistic baseline as compared to
the exponential and weibull hazard functions. According
to the diagnostic plots the log failure odds of log-logistic
baseline with log time was more linear as compared to the
plots of exponential (cumulative hazard versus time) and
weibull (log cumulative hazard versus log time), showing
the SAM dataset was best described by the log-logistic
baseline. This result was also confirmed by the cumulative
hazard plots for the Cox-Snell residuals of the exponen-
tial, weibull and the log-logistic models. The plot was
more approached to the line in case of the log-logistic
model, indicating that the log-logistic was best. A q-q
plot was done to check if the accelerated failure time pro-
vided an adequate fit to the dataset and the log-logistic
as baseline was accelerated failure time model. Hence,
a survival model need not be chosen arbitrarily to fit
event times, the baseline hazard function as well as the
frailty distribution should be compared and the most
appropriate model should be selected for appropriate
inference.

The prognostic factors considered were the age group
of the child, type of malnutrition and presence or absence
of co-infection, which were significant covariates using
univariable analysis. Analysis using the best model, log-
logistic-inverse Gaussian frailty model showed that the
age group of children and presence of co-infection(s) were
the determinant factors for the time-to-cure from SAM.
Children aged between 12—23 months had prolonged cure
time as compared to older age groups. This age group
is known to be the time when the prevalence of SAM
is the highest [19-21]. This may be related to the fact
that they start sub-optimal complementary feeding and
compromise breast feeding practice which is important in
preventing malnutrition among children [22]. Literatures
like [23-25] identified infection as a prognostic indicators,
likewise, co-infection(s) prolonged the time-to-cure from
SAM in this study. However, our findings showed that the
time of curing did not depend on type of malnutrition.
Similarly, Efrem et al. [26] showed that there was no signif-
icant difference in average length of stay among patients
with severe wasting and edematous malnutrition. There-
fore, a special attention should be given to children with
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SAM between one to two years old and/or co-infected
by other disease(s) in order to control excess numbers
of children in the program at any one time which might
increase the cost of the program. A program is well func-
tioning and considered acceptable if the length of stay in a
hospital is less than 4 weeks with acceptable cure propor-
tion of greater than 75% [15]. This study revealed that the
median time-to-cure from SAM for patients in Wolliso
St. Luke Catholic hospital was 14 days with maximum
cure time of 63 days of which (83.16%) were cured. This
implies that the program was acceptable as per the above
standard.

We classified SAM cases as marasmus, kwashiorkor and
marasmic-kwashiorkor, a naming might imply that the
cause is protein and calorie deficiency perse. However,
the intent was to see if there are differential in recov-
ery time between edematous and non-edematous cases
of SAM. We acknowledge the limitation of our study for
not being able to isolate SAM cases with micronutrient
deficiency.

Conclusion

The most appropriate statistical model for our dataset
among various parametric frailty models, which well
described the time-to-cure from SAM of the patients who
were diagnosed in Wolisso St. Luke Catholic hospital is
the log-logistic-inverse Gaussian frailty model. There is a
frailty (clustering) effect on time-to-cure from SAM that
arises due to heterogeneity between the kebeles of the
children. The median curing time of the children is about
14 days with maximum cure time of 63 days of which
83.16% were cured. These values show acceptable func-
tioning of the program in the hospital. Children who are
aged between a year and two years and/or co-infected by
other disease(s) prolonged their curing time as compared
to the other groups of the patients among children under
the age of five years.
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