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Abstract

Background: In 1995, Eide and Gefeller introduced the concepts of sequential and average attributable fractions as
methods to partition the risk of disease among differing exposures. In particular, sequential attributable fractions are
interpreted in terms of an incremental reduction in disease prevalence associated with removing a particular risk
factor from the population, having removed other risk factors. Clearly, both concepts are causal entities, but are not
usually estimated within a causal inference framework.

Methods: We propose causal definitions of sequential and average attributable fractions using the potential
outcomes framework. To estimate these quantities in practice, we model exposure-exposure and exposure-disease
interrelationships using a causal Bayesian network, assuming no unmeasured latent confounders. This allows us to
model not only the direct impact of removing a risk factor on disease, but also the indirect impact through the effect on
the prevalence of causally downstream risk factors that are typically ignored when calculating sequential and average
attributable fractions. The procedure for calculating sequential attributable fractions involves repeated applications of
Pearl’s do-operator over a fitted Bayesian network, and simulation from the resulting joint probability distributions.

Results: The methods are applied to the INTERSTROKE study, which was designed to quantify disease burden
attributable to the major risk factors for stroke. The resulting sequential and average attributable fractions are
compared with results from a prior estimation approach which uses a single logistic model and which does not
properly account for differing causal pathways.

Conclusions: In contrast to estimation using a single regression model, the proposed approaches allow consistent
estimation of sequential, joint and average attributable fractions under general causal structures.
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Background
As has been noted elsewhere, confusion abounds regard-
ing the definition and interpretation of population
attributable fractions (PAF) in epidemiology [1]. For
instance, in their seminal paper where Eide and Gefeller
introduce average and sequential attributable fractions
[2], they define the population attributable fraction as ‘the
proportion by which a disease prevalence (or incidence) is
reduced if the whole population is hypothesized to attain
the same risk of disease as the individuals within the low-
est exposure category.’ The problem with such a definition
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is it is non-causal. That is, if individuals in the lowest expo-
sure category do have a lower disease risk, it might not be
because of any health benefit attributable to the exposure,
but because of spurious correlations or even reverse cau-
sation. Taking this kind of logic to the extreme, one could
make quite non-sensible conclusions regarding say the
cot-death risk attributable to Swiss cheese consumption,
or the risk of heart disease attributable to doctor visits. Of
course, Eide and Gefeller clearly understand this, and later
in the paper mention that ‘if there exists a direct cause-
effect relationship between the exposure and the disease,
the attributable fraction may be interpreted as the pro-
portion of the diseased that would have been prevented if
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the exposure was totally eliminated from it’ (note that the
use of the word eliminate is convenient but slightly mis-
leading as it refers to a hypothetical population where the
risk factor of interest was always absent rather than elim-
inated at a point in time). They then define this second
quantity as the ‘etiologic fraction’, introduced by Mietti-
nen [3]. Incidentally, Robins and Greenland [4] discuss a
subtly different metric, more directly interpretable as the
proportion of disease caused by a risk factor which they
also call an etiologic fraction. More recently, the epidemi-
ological community seems to have settled on Miettinen’s
definition ([5, 6]). This seems sensible to us as it does have
a direct causal implication (that is, it will only be non-zero
if the exposure has some causal effect on disease), and
can be estimated in real data, provided we can adequately
adjust for confounding [7].
While the standard definition of an attributable fraction

only pertains to one risk factor, sequential and average
attributable fractions [2] focus on measuring the cumula-
tive contribution of a collection of risk factors to disease
and indeed on partitioning this quantity into individual
contributions for each risk factor. In particular, a sequen-
tial attributable fraction for a risk factor can be informally
defined as the relative change in disease prevalence due to
removing the risk factor from the population in a situation
where a subset of the other risk factors under investigation
are already eliminated; different sequential attributable
fractions corresponding to differing risk factor elimina-
tion orders (note again that ‘removal’ technically refers
to disease risk in hypothetical populations where all risk
factors in a particular set were always absent). A crucial
point to consider when estimating this quantity is that risk
factors have effects on each other as well as effects on dis-
ease. As an example, a dietary intervention might effect
cholesterol and blood pressure; that is there may be direct
effects on disease as well as effects of disease mediated
through other risk factors. This implies that the sequen-
tial attributable fraction for blood pressure, having first
intervened on diet would be different from the population
attributable fraction for blood pressure because:

1. Some disease cases, that would occur under a
no-intervention scenario, may have been prevented
by the prior intervention on diet. The subsequent
intervention on blood pressure will have no impact
on these individuals.

2. The intervention on diet has changed the
distribution of blood pressure in the population. This
will change the impact of a subsequent intervention
on hypertension

Usually calculations of sequential attributable fractions
(including the author’s own R-package, averisk as well as
the calculations demonstrated in [8]) properly incorporate

(1), but don’t allow for (2) and as a result can generate
biased estimates of sequential disease burden, although
some proposals have been suggested to deal with this
issue from a non-causal perspective ([9]). As an alterna-
tive, here we describe a Monte-Carlo approach based on a
causal Bayesian network describing the inter-relationships
between all risk factors and disease. This approach
promises consistent estimation of sequential attributable
fraction and average attributable fractions under any
known causal graph, with a proviso that statistical models
are also correctly specified. Interestingly, while sequen-
tial attributable fractions can be substantially biased when
causal structure is ignored, average attributable fractions
might be affected to a lesser degree as positive and neg-
ative biases for various sequential fractions may partially
cancel. Empirical evidence for this observation is shown
in the Results section using, INTERSTROKE [10], an
international case control dataset used to investigate the
contributors to stroke on a global level.

Methods
Causal definitions of attributable fractions in a multi-risk
factor setting
Let Yi ∈ {0, 1} be the observed disease outcome for an
individual, labeled i, selected from the population. Sup-
pose there are K risk factors or exposures that might effect
disease status; risk factors could be binary (eg. diabetes
Y/N), categorical (current, previous or never for smok-
ing status) or continuous (blood pressure). The observed
values of these K risk factors for person i are denoted
A1
i ,A2

i , ...,AK
i . To define population attributable fractions

in a causal framework, some counterfactual notation [11]
is necessary. In this regard, we define

Yi
(
a1, a2..., aK

)
(1)

as the potential disease outcome for person i in a world
where we had somehow intervened on all K risk factors
to set A1

i = a1, ...,AK
i = aK , with a1, ..., aK possible val-

ues for the K risk factors. Note that we will sometimes
write (1) as Yi(A = (a1, a2..., aK )), a notation that will
be more convenient when we intervene only on a sub-
set of the risk factors. It is important that we also define
potential outcomes for subsets of the risk factors. For
shorthand convenience, we denote the observed vector
{Ak

i ; k ∈ S} as Ai,S. In this case, we can consider potential
outcomes for the remaining risk factors, Sc = 1, ...,K\S,
as Ai,Sc(AS = aS), if Ai,S = aS.
The disease indicator for person i based on the interven-

tion on Ai,S is now Yi(AS = aS,ASc = Ai,Sc(AS = aS)).
Note that the contributions before and after the comma in
the preceeding expression in some way denote the direct
and indirect effects of AS. However, if we fix individual i,
the expression is just a function of aS, and so we will write
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this informally as Yi(aS), in a slight abuse of notation (that
is technically, the new function Yi is no longer the same
function as in (1). Suppose that aS = 0S represents the
reference level of the risk factor. Imagine intervening on
risk factor j ∈ Sc having already made the intervention:
AS
i = 0S; it follows immediately that the potential out-

come for the new joint intervention changes to: Yi(0S∪j).
Treating i as a randomly selected individual from the pop-
ulation, a sequential attributable fraction for risk factor j,
after a population intervention setting AS = 0S is then
defined as:

SAFj|S = P(Y (0S) = 1) − P(Y (0S∪j) = 1)
P(Y = 1)

(2)

Now suppose that S = φ, the empty set. We define
Yi(0φ) = Yi, the observed disease indicator under no
intervention. It follows that:

SAFj|φ = P(Y (0φ) = 1) − P(Y (0{j}) = 1)
P(Y = 1)

(3)

= P(Y = 1) − P(Y (0{j}) = 1)
P(Y = 1)

= PAFj

so that the above framework covers the regular
attributable fraction. In addition, joint attributable frac-
tions, which compare current disease prevalence with the
hypothetical disease prevalence if a set of risk factors were
removed (for instance an attributable fraction referring to
a hypothetical population where nobody smoked or drank
alcohol) can be defined as:

PAFS = P(Y = 1) − P(Y (0S) = 1)
P(Y = 1)

, (4)

which can be seen mathematically to equal the sum of
the sequential attributable fractions, (2), corresponding
to elimination of individual risk factors in S, no mat-
ter in which order the risk factors are eliminated. Note
that this invariance property (that the sum of sequential
attributable fractions is invariant to the order of elimina-
tion) is not an assumption, but actually a consequence of
the causal definitions of sequential and joint attributable
fractions given in this manuscript which compare dis-
ease prevalence in the real world and in a counterfac-
tual world where a set of risk factors never existed (for
instance, a world where tobacco and alcohol didn’t exist).
As an aside, note that one could also define sequen-
tial attributable fractions using Pearl’s Do-algebra [12],
with similar notation for risk factors and outcome, but
identifying counterfactual probabilities P(Y (0S) = 1) as
P(Y = 1|do{AS = 0S}), with the do-notation indicating

a probability distribution associated with the intervention
AS = 0S.

Causal bayesian networks and framework for estimation
Suppose that G is a causal Bayesian network, informally
a directed acyclic graph (DAG) where arrows represent-
ing causal dependencies between confounders, risk fac-
tors/exposure and disease, together with a sensible prob-
ability distribution on the graph that respects these causal
dependencies. To consistently estimate causal effects that
risk factors may have on each other and on disease,
we need to make a strong no unmeasured confounding
assumption: that is common causes of nodes in the graph,
which may be causes of two risk factors or a cause of risk
factor and disease, are also included as nodes in the graph
within G. Causal Bayesian networks have a local Markov
property that the conditional probability distribution of
any nodeXj, given values for the other variables in the net-
work, only depends on the values xpaj of the parent nodes
(here we assume that paj ⊂ {1, .., j− 1} - such a labeling of
nodes can always be chosen for a DAG). That is:

pXj|X−j(xj|x−j) = pXj|Xpaj
(xj|xpaj) (5)

, implying that:

pX1,...,XN (x1, ..., xN )

=
∏
i≤N

pXi|X1,..,.Xi−1(xi|x1, ..., xi−1)

=
∏
i≤N

pXi|Xpai
(xi|xpai). (6)

A powerful feature of this framework is that the repre-
sentation (6) extends easily to distributions derived from
interventions. For example, intervening on risk factor j to
eliminate it from the population is equivalent to remov-
ing the arrows into j in the corresponding causal graph.
A key assumption here is that while this intervention
does change the marginal distribution of j in the popula-
tion, it doesn’t change any of the mechanisms by which
risk factor j might effect other risk factors; or in other
words that the conditional distributions pXi|Xpai

(xi|xpai)
remain unchanged for i �= j. Multiplying these condition-
als leads to the joint distribution of {X1, ...,XN } under this
intervention (that sets Xj = 0):

pX1,...,XN |do{Xj=0}(x1, ..., xN ) =
∏

i≤N ,i�=j
pXi|Xpai

(xi|xpai)I{xj = 0}.

(7)

The ‘do’ notation was originally introduced by Judea
Pearl [12] to represent intervention distributions that are
estimable from observational data. Our procedure here is
to use (7) recursively to simulate sequential attributable
fractions, using estimates of the conditional probability
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distributions: p̂Xi|Xpai (xi|xpai ) fitted from real data. As a
concrete example that should illustrate the main ideas,
suppose that we have a causal graph and associated
probability distribution (6), summarizing the causal rela-
tionships between smoking, high blood pressure (HBP)
and disease. We refer to this dataset as Dφ . We are
interested in estimating the sequential attributable frac-
tions: SAFHBP|φ , and SAFSmoking|{HBP}, based on a ran-
dom sample of individuals i = 1, ...,N , with risk fac-
tors and disease generated according to (6). To estimate
the first sequential attributable, we can simulate values
{smokingi, HBPi, diseasei} for each individual i from (7)
where j represents ‘HBP’, that is from the intervention dis-
tribution corresponding to ‘do: HBP’=0. In this process,
we only need to simulate descendants of the node that
is fixed, since the marginal distribution of the ancestors
of HBP are the same in (6) and in (7). This simulation
produces a new (and random) dataset, DHBP , that con-
sists of plausible values of {smokingi, HBPi, diseasei} for
each person under the intervention: ‘do: HBP=0’. Pro-
vided the number of individuals, I is large enough, one
can estimate SAFHBP|φ by the quantity: ˆSAFHBP|φ =∑

Yi−∑
DHBP(Yi)∑
Yi , where Yi denotes the disease status for

individual i in the original dataset, and DHBP(Yi) the
randomly assigned disease status for person i in DHBP .
Note that this simulation based process takes into account
both the direct effects of a blood pressure intervention
as well as indirect effects through mediating risk fac-
tors. Next, we apply a second do-operator, correspond-
ing to the intervention ‘do{smoking=0}’. This implicates
simulating values for the descendents of smoking in a
second Bayesian network, where both HBP and smok-
ing are set to 0 with the non-descendants of smok-
ing being fixed as in DHBP . The resulting dataset will
be denoted D{Smoking,HBP}, with corresponding simulated
values of disease: DSmoking,HBP(Yi). An estimate of the
sequential attributable fraction for smoking, given an
intervention that has eliminated hypertension is then:

ˆSAFSmoking|{HBP} =
∑

DHBP(Yi)−∑
D{Smoking,HBP}(Yi)∑
Yi . Sequen-

tial attributable fractions, that condition on the elimina-
tion of 2 or more risk factors are calculated similarly in a
recursive fashion. For instance, the sequential attributable
fraction corresponding to an intervention on j, having pre-
viously intervened on the set of risk factors S is given by:

ˆSAFj|{S} =
∑

DS(Yi) − ∑
DS∪j(Yi)∑

Yi
(8)

Average attributable fractions
As described in [13] the average attributable fraction for a
risk factor j represents the average sequential attributable
fraction for j over all possible risk-factor elimination
orders. For a large number of risk factors, K the number

of elimination orders grows exponentially as K !, and cal-
culating sequential attributable fractions for all possible
orders quickly becomes infeasible. However, as demon-
strated in that paper, one can approximate the average
attributable fraction by randomly sampling elimination
orders, calculating sequential attributable fractions for
each risk factor according to each sampled elimination
order, and finally averaging these over all sampled elimina-
tion orders. Here, we follow the same process of randomly
sampling elimination orders, with the exception that at
each step each sequential attributable fraction is subject
to an additional Monte Carlo error (according to simu-
lating realizations of the Bayesian network); fortunately,
one can effectively eliminate this Monte Carlo error by
simulating a sufficient number of elimination orders. In
[13] we suggested average at least 1,000 randomly sampled
elimination orders to calculate sequential and average
attributable fractions with reasonable accuracy.

Results
INTERSTROKE project
We have previously used data from the INTERSTROKE
project to illustrate methodologies for approximating
average attributable fractions, [13]. Briefly, INTER-
STROKE was a standardized international study of stroke
cases and controls in 32 countries in Asia, Europe, Aus-
tralia, the Middle East and Africa. In the original study,
stroke cases were matched with controls according to
age, gender and region. Here, we have restricted to the
ischemic stroke patients and their matched controls.
Interviews with hospital and community controls and
stroke patients (or proxy respondents) post-stroke were
used to retrospectively collect information on key causal
and modifiable risk factors for stroke, as described in [10].
The risk factors examined were healthy eating score (in
tertiles), physical inactivity (yes/no), smoking behaviour
(current smoker or ex/no smoker), alcohol intake (no
alcohol, moderate consumption, high consumption), an
indicator for stress, ApoB/ApoA lipid ratio (in tertiles),
pre-existing hypertension or high measured blood pres-
sure (yes/no), waist hip ratio (in tertiles), cardiac risk
factors such as atrial fibrillation or flutter (yes or no) and a
diagnosis of diabetes mellitus or elevated HbA1c(yes/no).
While the drawbacks of categorizing exposures into risk
factors are well understood [7], we have repeated the 2016
analysis again with categorized risk factors firstly to enable
comparability with our previous analysis and secondly
since there are difficulties defining attributable fractions
with continuous exposures, particularly when the rela-
tionship between exposure and disease risk is monotonic.

A causal graph for INTERSTROKE
One needs to assume a causal graph describing the
causal relationships between confounders, risk factors
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and disease to implement the methods described ear-
lier. To do this, it is helpful to divide the risk factors
and exposures into categories depending on whether
they are descriptive of an individual’s behaviour SB =
{Smoking, Alcohol intake, inactivity, diet and stress},
their physiology SP = {High blood pressure, ApoB/ApoA
ratio, Waist hip ratio} and what might be regarded as pre-
clinical disease SD = {Cardiac risk factors, Pre-clinical
diabetes}. We also consider a set of variables that
might be confounders (joint causes of the risk factor
and stroke) for all the listed risk factors. This set of
confounders, SC consist of the individuals and their
parents’ education level (in 5 levels from no-education
to holding a college Degree), age, gender and region.
Here we make the simplifying assumption that disease
develops in a stage-wise fashion, each stage being repre-
sented by one of the sets of variables just described with
variables in earlier stages having causal effects on variables
contained in later stages, but not vice-versa. The
ordering of stages is indicated by the sequence,
{SC , SB, SP , SD,Y }, and summarized by the causal graphs
in Figs. 1 and 2.

Estimation of probability models
The next step in the process is to estimate probability
models corresponding to non-root nodes in Fig. 1. The
process here is to simply fit logistic or proportional odds
models depending on whether the target variable is binary

or ordinal and adjusting for the variables that ‘point’ to the
target node in question. For simplification, only adjust-
ment for main-effects are made in the example here. More
generally, more complicated models, possible incorporat-
ing general interaction structures could and should be
used if necessary. To fit these models to case control data,
one needs to perform weighted maximum-likelihood esti-
mation to imitate estimation using a random sample from
the population.We chose weights of 0.0035 (for each case)
and 0.9965 (for each control), reflective of a yearly inci-
dence of first ischemic stroke of 0.35%, or 3.5 strokes per
1,000 individuals. These weights were chosen according to
average incidences across country, age group and gender
within INTERSTROKE according to the global burden of
disease [14]. In reality, the estimates are quite robust to
the precise value of the case/control weight, as shown in
the Additional file 1 of [13]. As a side note, we had first
considered individually weighting each case to reflect inci-
dence within a particular age/gender and region bracket,
but the variability in the individual weights for each case
transferred to increased variance in estimation in regres-
sion parameters, so the more crude correction was used
instead.

Estimation of sequential and average attributable fractions
We randomly sampled 10,000 elimination orders (or ran-
dom permutations of the 10 risk factors) computing
Monte-Carlo sequential attributable fractions for each

Fig. 1 Hypothesized causal Bayesian network describing direct and indirect effects pertaining to causal risk factors and associated confounders for
stroke. Abbreviations for variables in the causal graph are as follows. Sex: gender of participant; Region: Geographic area of participant either
Western Europe, North America, Africa, South Asia, China, South America and South East Asia; Educ: years of education (None, less than 8, 9-12, more
than 12); Stress: Summary variable for psychological stress (yes or no); Smoke: smoking status (current, ex-smoker, never smoker); Diet: AHEI diet
score (in tertiles); Exer: physically active (yes or no); Alcoh: alcohol consumption (none; moderate; binge drinker); lipids: Apolipoproterion
B/Apolipoprotein A1 ratio (in tertiles); WHR: waist hip ratio (in tertiles); HBP: clinically diagnosed high blood pressure (yes or no); HD (history of risk
factors for heart disease - yes or no); DM (clinically diagnosed diabetes mellitus or measured Hba1c level at least 4.5 - yes or no)
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Fig. 2 Simplification of network from Fig. 1, showing it’s layered structure. Confounders consists of the variables sex, region and education.
Behaviour consists of the variables smoking status, diet, alcohol consumption, stress levels and physical activity. Physiology groups the variables
lipids, waist hip ratio and high blood pressure. Pre-clinical disease consists of diabetes and risk factors for heart disease

random permutation. Similarly to the calculations in [13],
a correction needs to be made to (8) when estimating
sequential attributable fractions for case control structure;
that is for a particular elimination order and Monte Carlo
simulation, the corrected formula is:

ˆSAFj|{S} =
∑

wiDS(Yi) − ∑
wiDS∪j(Yi)∑

wiYi
. (9)

, where the weights, wi are described in the paragraph
above. In Fig. 4, we investigate how the mean of these
estimated sequential attributable fractions depends on the
position in the elimination order for two causal graphs:

1. Bayesian network model with direct and indirect
effects, represented by Fig. 1 and summarized by
Fig. 2.

2. A Bayesian network model with direct effects only
represented by Fig. 3.

In particular, the second graph represents a model
where there are no indirect effects of a risk factor
on stroke, which is effectively assumed in previous
approaches for calculating sequential attributable frac-
tions which used a single logistic model. The most promi-
nent feature of Fig. 4 is the difference in sequential
attributable fractions for physical inactivity when elim-
inated first (the sequential attributable fraction being
higher under Fig. 1). This might be something that we
would expect a-priori since physical activity should have
beneficial effects on downstream risk factors such as
blood pressure and waist hip ratio and these indirect

effects may reduce stroke risk (Recall that Fig. 3 only con-
siders direct effects, whereas Fig. 1 considers both direct
and indirect effects). Perhaps less intuitively, the sequen-
tial attributable fraction for alcohol in positions 1, 2 and
3 are higher using the model that only considers direct
effects. A naive interpretation might be that the indirect
effects of eliminating alcohol result in increased stroke
risk. Examining the fitted models, we see that the inter-
mediate pathways involving alcohol are ambiguous. Binge
drinking almost halves the odds of being in the top lipid
(APOB/APOA) tertile (a 44% reduction to be precise)
compared to a non-drinker, but increases the odds of
hypertension by 65%, has no appreciable effect on waist
hip ratio (the point estimate indicates an increase of 9.8%
in the odds of the top tertile) , reduces the odds of car-
diac risk factors by 11.5% and has no appreciable effect
on the effect of diabetes (a 7.5% increase in odds). In
summary, these intermediate pathways seem to somewhat
attenuate the direct effect of alcohol on stroke (the direct
effect of binge drinking is to increase stroke risk by 82.8%,
according to the fitted probability distribution for stroke),
and slightly reduce the sequential attributable fraction
for alcohol, at least when alcohol is one of the first risk
factors to be eliminated (The estimated odds ratios cor-
responding to the inter-relationships between risk from
Fig. 1 are given as Additional file 2). Here it should be
emphasized that these effects are only as good as the
causal graph and statistical models that were a-priori
assumed, and these are surely at best rough approxima-
tions to the truth. In particular, it is possible that reverse
causation might be at play; for instance, the negative
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Fig. 3 Bayesian network with only direct effects. Abbreviations for nodes are as listed in Fig. 1

correlation between alcohol consumption and cardiac fac-
tors might be explained by individuals changing their
alcohol consumption post diagnosis of atrial fibrilation.
It is the estimation approach, rather than the exact val-
ues of the estimates that we would like to emphasize
here. Average attributable fractions for the two causal
graphs are reported in Table 1. The total estimated PAF
for eliminating all 10 risk factors is 88.6% for both causal
structures, found by summing the average attributable
fractions across all risk factors. Similarly to the case with
sequential fractions, the average attributable fractions are
higher for physical inactivity and stress when incorpo-
rating indirect pathways via the Bayesian network, and
higher for alcohol intake when ignoring indirect path-
ways, although these differences are relatively smaller for
average PAF than for sequential PAF. The Monte Carlo
standard error is between 0.1% and 0.2%, indicating that
10,000 simulations is more than sufficient to provide a
good aproximation to the true estimate. Note that these
standard errors (and the error bands in Fig. 4) display
Monte Carlo error; bootstrapping the entire procedure
is necessary to estimate confidence intervals for average
attributable fractions.

Conclusions
Our contributions in this manuscript are to first define
sequential and average attributable fractions in a causal
framework and second to describe a possible methodol-
ogy to estimate these quantities based on simulation from
causal Bayesian networks. However, it is imperative to
describe several caveats to our work. First, assuming the

sequential attributable fractions in the Methods section
are well defined causal estimands, consistent estimation is
only possible under strong assumptions that the assumed
DAG is a causal Bayesian network with no missing con-
founders, and that our modeling assumptions assumed
when estimating the component probability disbributions
are correct. It is often said that causal inference usually
involves unverifiable assumptions [15], and that is cer-
tainly the case here. While the causal structure we’ve
assumed might correspond to an approximately correct
but overly-simplistic model for prospective risk factor
development, estimating these relationships in a case-
control data-set is problematic due to possible reverse
causation. In addition, the use of categorized risk fac-
tors (rather than the underlying continuous exposures)
may result in inadequate adjustment for confounding.
However, these problems are not unique to an approach
based on Bayesian networks and will create biases even
under simpler (and incorrect) models which only con-
sider direct causal effects that a risk factor has on dis-
ease. The second caveat relates to our definitions of
attributable fractions through potential outcomes and
whether this is in some cases ill-defined. For instance,
our definition of the attributable fraction for diet (in
Results) involves a hypothetical population where individ-
uals had measured AHEI-diet-scores in the top (or most
healthy!) tertile. There are many ways of engineering such
a diet, all of which might have differing potential out-
comes for stroke and generate diet score values in the
desired range (the top tertile of the empirical distribu-
tion of diet score among INTERSTROKE participants).
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Fig. 4 Estimated sequential attributable fractions, by position in elmination order. We can be 95% confident the true estimate (that would be
calculated from the procedure when the number of simulationsm → ∞) lies in the Monte Carlo interval around the point estimate. The estimates
shaded red correspond to the Bayesian network in Fig. 1, whereas the estimates shaded blue correspond to the Bayesian network in Fig. 3. Note that
the Monte Carlo error at position k incorporates variation due to random selection of the set of risk factors/exposures that are intervened on in
stages 1,...k − 1, and also variation based on the recursive simulation of the disease response described in the main text

Attributable fractions refer to interventions (where a risk
factor is removed in a hypothetical population); one could
rephrase the problem of the ill-defined potential out-
come by saying that the intervention that ‘removes’ the
risk factor is not particularly well defined. A school of
thought might say that well defined causal effects require
a contrast of potential outcomes under well defined
interventions [16].

It might at first be thought that the simulation approach
using Bayesian networks is in some sense ‘overkill’. After
all, one can estimate causal effects and attributable frac-
tions for a single risk factor using a single regression
model by using the g-formula as described in [6]. Cal-
culating sequential attributable fractions, on the other
hand, requires estimating average causal effects for joint
interventions and based on the position of these risk fac-

Table 1 Average attributable fractions and standard errors for 10 INTERSTROKE risk factors. BN (Bayesian network) corresponds to the
causal structure shown in Fig. 1, whereas DE (Direct effects only) corresponds to the causal structure in Fig 3. The Monte Carlo SE is
reported for the estimates in the top row of the table, but would be similar for the estimates corresponding to Fig. 3

Inactivity Diet Smoking Alcohol Stress High BP Lipids WHR Cardiac DM

Point estimate, BN 19.5% 7.3% 6.4% 1.4% 2.6% 23.0% 15.0% 7.8% 4.3% 1.4%

Point estimate, DE 16.5% 7.1% 7.1% 1.7% 2.1% 23.8% 15.9% 7.9% 4.8% 1.8%

Monte Carlo SE, BN 0.20% 0.16% 0.16% 0.16% 0.16% 0.20% 0.18% 0.17% 0.16% 0.16%
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tors within the causal graph, more complicated estimation
approaches are necessary. For instance, if we want to
find the average joint causal effect of an intervention on
diet and cardiac factors on stroke (based on the causal
DAG given in Fig. 1), one might at first try using ‘stan-
dardization’, but on closer examination, blood pressure is
both a mediator of the effect of diet and a confounder
for the effect of cardiac factors, and an adjustment set
that includes both excludes or includes diet is prone to
bias. This issue can be dealt with using methods like the
time-varying g-formula and marginal structural models,
as again described in [6], but require extra thought and
expertize in their application. Interestingly, our approach
motivated by recursive application of the do-operator as
described first by Pearl, corresponds closely to a simula-
tion based version of the g-formula in causal structures
involving time varying confounding. However, for com-
plex causal structures where an arbitrary set of risk fac-
tors are intervened on, the simulation based approach
described in this manuscript certainly seems the easiest
way to proceed.
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