Skip to main content

Population-level predictors of sexually transmitted infection rate changes in Missouri: an ecological study



Sexually transmitted infection rates continue to increase across the US, further developing health disparities and economic burdens of disease, especially as migration occurs. In this study, we aim to assess the relationship between STI rates and population-level variables from 2008 to 2017 at the county level in Missouri.


Two data sources were used: STI rates of chlamydia, gonorrhea, syphilis, HIV reported to Missouri DHSS and ACS 1-year county population estimates. Linear regression models and ANOVA tests were conducted in SPSS for each STI from year-to-year and 2008–2017. Covariates included in the analyzes were county-level income, employment rate, race, ethnicity, age, and percent poverty. Further, Akaike Information Criterion tests were performed to indicate the best predictor models and averaged standardized beta values.


Significant relationships among STI rates and population growth were identified. Chlamydia, syphilis, and HIV were positively associated with population growth from 2008 to 2017 (β = 0.15; β = 0.01; β = 0.05, respectively). Gonorrhea was negatively associated with population growth (β = − 0.02) but positively associated with unemployment rates (β = 0.01) highlighting the need to address population growth, as well as other variables in a population.


There seems to be a positive relationship among population change and rates of STIs. As populations change, rates of STIs change. Moving forward, quantitative work should be conducted in various states and the nation to understand this relationship in different contexts. Future studies should be qualitative word focused on county health departments and community health improvement plans. Lastly, public policy should be implemented to buffer the impact of migration on health outcomes.

Peer Review reports


Sexually transmitted infections (STI) continue to pose a complex, significant, and constantly evolving public health concern in the United States (US) [1]. In the Midwest from 2016 to 2017, the chlamydia rate increased 5.6%, the gonorrhea rate 19.5%, and the syphilis rate 8.8% [1,2,3]. This increase is attributed to more widespread screening, reporting, and cases altogether [1]. Other factors include more sensitive and accurate diagnostic tests, like nucleic acid amplification tests (NAATs) [1]. A small percentage increase indicates a significant amount of new cases and subsequent healthcare costs as more are being screened and treated [1]. Human Immunodeficiency Virus (HIV) incidence has declined in recent years due to extensive preventative campaigns but has now plateaued as specific high-risk groups such as transgender persons, men who have sex with men, African American, and Latinos, are not being adequately reached, especially in the South [4].

There are serious implications if infected individuals go unscreened and untreated after contracting STIs. The reasons for not seeking diagnosis and treatment can be complex. Marginalized ethnicities, individuals that may experience racism, homophobia, and xenophobic interactions, and impoverished populations, have the lowest access to healthcare and screening tests, placing them at high risk of acquiring STIs [5]. Drug use also increases risk of STI contraction, along with unplanned pregnancies [6]. More specifically, methamphetamine use, a known problem within Missouri, increases libido and risky sex among its users [6]. Finally, group sex or sex with multiple partners can increase risk of transmission [7].

Some STIs can manifest asymptomatically more so in women and cause them to go unscreened and untreated for longer than men who typically develop symptoms faster and more noticeably [8]. For this reason, women often suffer more severe, long-term complications from STIs, some including chronic pelvic pain, ectopic pregnancies, and infertility [8].

Between screening, treatment, and long-term management of STIs, the estimated financial burden in the United States is around $15.6 billion [9]. Chlamydia and gonorrhea account for $516.7 million and $162.2 million respectively, while syphilis accounts for $39.3 million, and HIV for $12.6 billion. HIV accounts for 81% of the total annual cost of STIs in the US. The overall increase in STI cases has not been limited to a single social group, age group, gender, or socioeconomic class [7]. These costs may change as STIs shift, such as the emergence of multi-drug resistant gonorrhea [10]. Although data over the cost of STIs within Missouri is unknown, in 2016, the CDC provided $6.8 million in funding specific for HIV/Acquired Immunodeficiency Syndrome (AIDS) prevention and treatment and an additional $2.2 million in funding specific for other STIs. These values may be subject to change as multi-drug resistant gonorrhea becomes more prevalent [10, 11]. Antibiotic resistant gonorrhea has the potential to become an incurable, chronic disease resulting in disability and death in a previously easily curable infection, highlighting the need to research and intervene in STIs at a population-level now [12].

It is known that increased levels of unemployment can cause lowered income for individuals and families [13]. Increased poverty levels have been linked to increased practice of risky sexual behaviors, like using a condom inconsistently or never, not using oral contraceptives, or other forms of birth control, while also having more sexual partners and ‘one-night stands’ [13]. These behaviors increase risk of both encountering and contracting an STI [13]. Here, it can be seen that population-level variables, or macro effects, can effect STI rates and spread as populations continue to change and encounter different situations.

Social epidemiology, a research methodology and theoretical framework that focuses on social determinants, practices, and health outcomes, provides an appropriate framework to address the factors that impact STI rates. Macro effects on disease and STI transmission are often ignored and instead the focus is put on individual risk factors [7]. Social epidemiology defines three levels to the spread of STIs throughout society: 1) individual components, 2) social components, and 3) structural components [14]. Individual components involve biological susceptibility and risky behaviors. Social components involve networks, communities, and how disease diffuses across populations [14]. The structural components are grouped into 1) cultural context, 2) social networks, 3) neighborhood effects, and 4) social capital. Social epidemiology can be used as a lens to understand the impact of population change and STI rates within a state. Social epidemiology lacks the insight of an individualized point of view on STIs, but the majority of data focuses on individual trends [7]. It instead provides insight into large-scale trends affecting many with STIs, where data may be less extensive but equally compelling due to the vast amount of individuals it can then reach [7].

Given the social complexity and financial cost of STIs, it becomes critical to monitor changing rates of these infections not only throughout static populations but also as moving populations change proportions of age, gender, ethnicity, and sexuality. With these changing dynamics, estimated risks of STI transmission fluctuate as different groups have different risk factors surrounding STIs [7]. As populations grow and move, the incidence of STIs is expected to grow, showing the importance of population-level predictors alongside individual interventions. Moving, changing populations face problems of isolation and loneliness after relocating [12]. It has been observed that moving populations typically experience a higher risk of contracting STIs [15]. Characteristics of a moving population include the social disruption that accompanies geographic relocation and a lack of access to health resources [15]. STIs have remained persistent within society, in part, due to failure to contact trace all sexual partners of STI patients [9]. This is possibly due to geographic or networking barriers, consistent with a moving population. Young people and those seeking secondary education most often have to relocate, particularly from rural to urban areas [16]. In the past, the urban population of the world has increased much more quickly than those of the rural population [12]. This is expected to remain the trend into the future as the United Nations expects the world population to increase to 9.1 billion by 2100 with urban population continuing to increase in population size, and rural populations moving more towards urban areas [12]. Urban populations were considered the only “high-risk” areas for STI spread in the past, but new pockets of widespread infection in less densely populated areas have begun to form [8]. In this study, we analyze the relationship among common STIs and population change at the county level in the state of Missouri from 2008 to 2017.


This study is an ecological study with the entire population of Missouri included in the analysis. Data was excluded if it did not address STI rates or population-level variables for the state of Missouri. A sample size calculation was not needed as data was reported and analyzed regarding the entire state of Missouri. To find the complete population count for Missouri, the Federal State Cooperative Program for Population Estimates, National Center for Health Statistics, and US Census Bureau were used. In order to understand the demographics of the Missouri population, data was taken from the Missouri Information for Community Assessment (MICA) by the Missouri Department of Health and Senior Services (DHSS) regarding county-level data on individuals aged between 15 and 44, sex, race, and ethnicity for each year between 2008 and 2017 [17]. Data on county-level households living below the poverty level was recorded from the Small Area Income and Poverty Estimates (SAIPE) Program through the Census Bureau [18].

Chlamydia, gonorrhea, and syphilis are all diseases that are required to be reported to the county health department with each new case. Each case that is reported to a county health department is required to be reported to the state health department [19]. The state health department then reports new cases of chlamydia, gonorrhea, and syphilis for each month and year. Incidence of the three STIs: chlamydia, gonorrhea, and syphilis were then compiled from the Missouri DHSS for each year between 2008 and 2017 [19]. Incidence and prevalence of HIV was obtained through Geographic Information System (GIS) programming by the Centers for Disease Control and Prevention from the years 2008–2016 [20]. At the time of this analysis, 2017 data were not available to the public. All data were exported into Excel and SPSS (version 2009, version 25) for analysis.

Analysis in SPSS and Excel evaluated the percent change in STIs from 2008 to 2017 for each county using the following formula: [(2017 County Cases / 2017 County Population) – (2008 County Cases / 2008 County population)] / (2008 County Cases / 2008 County Population). The resulting values were then exported into Table 1.

Table 1 Percent change in county characteristics from 2008 to 2017 -to appear between line 181 and 182

Using population change as the independent variable, unadjusted multi-variate linear regression models were conducted with HIV prevalence and incidence of HIV, syphilis, gonorrhea, and chlamydia as dependent variable year-to-year and from 2008 to 2017 in SPSS (version 24).

In SPSS, further analysis used population change as an independent variable to produce unadjusted multi-variate linear regression models with HIV prevalence and incidence, syphilis, gonorrhea, and chlamydia as dependent variables. These models showed the relationship from year-to-year and from 2008 to 2017 and preliminary findings showed a positive relationship between population change and STI rate changes.

Finally, Akaike Information Criterion (AIC) tests were conducted to define a best change predictor model for STI rates [21, 22]. The Akaike information criterion is a statistical test used to find the best change predictor models in datasets when multiple possible variables are being examined. Use of the AIC as a model fit test has been used previously in research surrounding STIs propelling it to be selected for further analysis in this study in order to find the best fit predictor model for the change in STI rates over the 10-year timeframe [23]. These variable combinations are considered significant and equally qualified predictor models if the ΔAIC, or change in Akaike Information Criterion, value is below two. Of those found to be similarly qualified change predictor models, the weights, or wi, and R2 values can then be further calculated to predict the likelihood of the significant models being classified as the best change predictor model in the dataset [24]. All models predicted to be of best fit gave similar wi and R2 values, showing that each model can be a good predictor in the future change of STIs. Note that a small alteration was made to the analysis with HIV being reported as total cases for the years of 2008 and 2017, instead of the two distinctions of incidence and prevalence to allow for a larger, more significant sample size.


Table 1 presents the percent change of study variables from 2008 to 2017, including: race/ethnicity, average household income, average unemployment rate, and population size. Most counties showed a negative percent change in white individuals and average unemployment rates and a positive percent change in African American individuals and Latinx individuals. Table 2 shows the percent change in STIs from 2008 to 2017. Most counties showed considerable percent increases in chlamydia, gonorrhea, and syphilis. The counties show mixed positive and negative percent changes regarding HIV, possibly due to the limited sample sizes and a focus on HIV prevention.

Table 2 Percent change in STIs from 2008 to 2017 while controlling for population change – to appear between lines 186 and 187

Table 3 shows the results of the linear regression among STIs and population change between 2008 and 2017. The association between population change and chlamydia (β = 0.60, p < 0.05), gonorrhea (β = 0.50, p < 0.05) and syphilis (β = 0.2, p < 0.05) showed a significant positive association. HIV diagnoses from 2015 to 2016 was positively associated with population change (β = 0.30, p < 0.05). HIV prevalence showed a similar positive association (β =0.03, p < 0.05). As populations increase or decrease in counties in Missouri, rates of STIs increase and decrease too.

Table 3 Associations among STIs and population change in Missouri. – To appear between lines 192 and 193

Table 4 displays the results from the Akaike information criterion test (AIC) with the significant change predictors bolded for each STI.

Table 4 Akaike information criterion output – to appear between lines 194 and 195

Table 5 further shows the model average beta values which can be interpreted to show the future change in STIs per unit of the variables included in the models. Population growth showed a positive value in chlamydia (β = 0.15), syphilis (β = 0.01), and HIV (β = 0.05) and a negative value in gonorrhea (β = − 0.03). Unemployment, which also appears in each STI’s change predictor model, showed a positive change for chlamydia (β = 0.02), gonorrhea (β = 0.01), syphilis (β = 0.001), and HIV (β = 0.02).

Table 5 Akaike information criterion model averages


This study identified several relationships between common STI rates and population-level variables across Missouri at the county level. A positive relationship exists between population change and STI rates. This study also shows that population growth and size are as integral to predicting the change in STIs as other structural-level functions, like income and unemployment. As populations change, rates of STIs change.

Population growth and total HIV cases showed a positive relationship through model average standardized beta values (β = 0.05205). If we extrapolate these results to predict future cases, we would expect 52 newly-diagnosed or existing-when-moving-into-the-county cases of HIV if the population of a county grew by 1000 people. The lifetime cost of a single case of HIV is estimated as $304,500 in medical expenses [9]. An increase in 52 new cases of HIV would cost a county $15.83 million more in healthcare expenditure.

Population growth was positively associated with chlamydia such that an increase of 152 cases may occur per additional 1000 people (β = 0.15206). This adds $29,550 total in additional costs, if the cases are treated successfully after initial infection [9]. Costs increase to $3.5 million total when considering sequalae costs in asymptomatic cases. A large cost disparity exists between male and female cases, highlighting the need to intervene on those infected before chlamydia can spread in a county [9].

Population growth was positively associated with syphilis such that an increase of 7 cases may occur per additional 1000 people. This adds $4.963 in additional costs per 1000 people for treatment of syphilis (β = 0.00664) [9]. Costs increase significantly and vary in reflection to the syphilis progression. The cheapest option after syphilis contraction, is immediate treatment before possible disease progression.

Population growth was negatively associated with gonorrhea such that a decrease in 27 cases may occur per additional 1000 people (β = − 0.02705). Interestingly, unemployment was positively associated with gonorrhea such that an increase in 12 cases may occur for 1000 additional unemployed individuals (β = 0.01224). This adds $2598 in direct medical care. Sequalae costs are estimated near $3.5 million with a large cost disparity existing between men and women [9]. This cost should be investigated further with the emergence of multi-drug resistant gonorrhea [10]. This difference in conclusions highlights the need to consider multiple variables when evaluating the future of STIs. There is no single variable that can accurately predict the future change in STIs without fail. Population growth, size, unemployment, and income must all be considered when predicting the future of STI rates.

Table 1 shows the percent change in STI rates from 2008 to 2017 while controlling for population change. The change is predominantly positive, meaning that even as the population is increasing, STIs are increasing at faster rates than the population. Generally larger counties, like Jackson or St. Louis county, displayed smaller percent changes. For example, the most prevalent STI, chlamydia, had a 0.15 and 20.13% increase in Jackson and St. Louis county respectively. Smaller counties displayed significantly larger percent increases. For example, chlamydia cases increased 246.54 and 142.05% in Ste. Genevieve and Stone county, respectively. This shows that STIs are a problem for both small and large counties and are growing at disproportionately high rates in some smaller, more rural counties.

We continue to see populations moving for various reasons, commonly pursuing higher education in younger aged individuals [15]. Individuals who are moving from one place to the other may lack social support and consistent healthcare during and after the move [14]. Public health professionals should consider developing interventions within vulnerable moving populations.

Based on these data, we suggest the following action steps. First, public health researchers should assess how population-level changes may be related to other communicable diseases in Missouri. Second, a yearly analysis should be conducted by the Missouri Department of Health and Senior Services to understand how population change may be impacting communicable diseases in Missouri and recommendations for clinical interventions should be developed and implemented by delving into the qualitative side of the data. Lastly, clinicians and public health practitioners in areas with growing, changing populations need to screen more patients for STIs, especially those who have recently moved. On the national level, a similar analysis should be conducted to evaluate the effects of population growth, among other variables, on the nation’s STI rates.

The data for this study does not allow assessment of immigration or emigration or differences due to births/deaths, showing a limitation. Population change is a complex variable. Individuals are likely moving within the state. Additionally, rural counties could be losing population due to fewer births. These population-level data do not measure within state population change. In the future, this assessment should be conducting at the national level, while also accounting for and quantifying immigration and emigration within overall population change. This is a population-level study and results are generalizable only to the state of Missouri. The two most populous areas border other states: St Louis bordering Illinois and Kansas City bordering Kansas, making it a unique environment to study. Additionally, there may be other external variables that influence the relationships that were not accounted for in the methodology. This further shows the need for this analysis to be produced at the national level.

This study uses multiple data sets from the state of Missouri. By integrating many datasets, we are able to study how changing populations may impact health outcomes. This allows for a socioeconomic understanding of health outcomes. If healthcare and public health professionals can quantify how populations will increase and change with population change, precision public health can create targeted interventions. This may take place through evaluation and integration of this study or similar studies into Community Health Improvement Plans (CHIPs) which then develops to include intervention plans based off the findings.

This work follows the social epidemiology network, focused around the social capital subset and some neighborhood effects. Direct neighborhood effects from social isolation of a moving population may explain increasing rates of STIs in growing communities with social ties disrupted. Indirect neighborhood effects of increased unemployment may explain the further movement of populations in search of work, with STIs spreading alongside. More research should be done on these possible implications for social theory. Authors of this manuscript plan to conduct further analyzes using additional covariate data to test the relationships among social capital, neighbor effects, and communicable disease. More interventions and research must also be conducted on policies, Community Health Improvement Plans (CHIPs), laws, and economic factors involved in potential prevention methods for STIs. Population-wide plans should be developed and implemented to benefit the community and reduce the health and economic burden of STIs. STIs continue to pose a growing problem across the United States, Midwest region, and the state of Missouri. Prevention and response are of utmost importance as HIV continues to spread and multi-drug resistance in gonorrhea becomes more apparent in the population. Population-level predictors are imperative to understanding STI rate changes and predicting when they may occur so that intervention may be put into place. As populations change in Missouri, due to movement, unemployment rates, or other variables, STIs change with them. Health care and public health providers should respond to moving populations and individuals through screening for STIs and implementing preventative measures. Missouri law and policy makers should develop legislation to better support moving populations and those facing unemployment in order to limit the spread of STIs. Further, legislation should be drafted to prevent unemployment rates from increasing and making preventative measures, like condoms and sexual education, more widespread. This way, the health and wealth of Missourians and United States residents may be bettered.


As population compositions, economic conditions, and prevention efforts change and grow, STI rates change and grow with them. Population size and growth are instrumental in predicting large-scale changes in STIs. Income, unemployment, and poverty rates must also be considered when evaluating STIs in a large population in order to predict future changes and emphasize prevention efforts as populations shift.

Availability of data and materials

The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.



Sexually Transmitted Infection


United States


Nucleic acid amplification tests


Human Immunodeficiency Virus


Acquired Immunodeficiency Syndrome


Missouri Information for Community Assessment


Missouri Department of Health and Senior Services


Small Area Income and Poverty Estimates


Geographic Information System


Akaike Information Criterion


Change in Akaike Information Criterion

wi :



Community Health Improvement Plans


  1. Centers for Disease Control and Prevention [internet]. Atlanta: The Centers c2018 [cited 2018 July 24]. 2017 Sexually Transmitted Diseases Surveillance – Chlamydia; [about 2 screens]. Available from

  2. Centers for Disease Control and Prevention [internet]. Atlanta: The Centers c2018 [cited 2018 July 24]. 2017 Sexually Transmitted Diseases Surveillance –Gonorrhea; [about 2 screens]. Available from

  3. Centers for Disease Control and Prevention [internet]. Atlanta: The Centers c2018 [cited 2020 April 6]. 2017 Sexually Transmitted Diseases Surveillance- Syphilis Available from

  4. US Department of Health and Human Services [internet]. Washington D.C. c2020 [cited 2020 June 30] U.S. Statistics [about 3 screens]. Available from

  5. Lane SD, Rubinstein RA, Keefe RH, Webster N, Cibula D, Rosenthal A, et al. Structural violence and racial disparity in HIV transmission. J Health Care Poor Underserved. 2004;15(3):319–35 PMID: 15453172.

    Article  Google Scholar 

  6. Ahuja N, Schmidt M, Dillon PJ, Alexander A, Kedia S. Online narratives of methamphetamine use and risky sexual behavior: can shame-free guilt aid in recovery? Arch Sex Behav. 2020.

  7. Cwikel J. Social epidemiology: strategies for public health activism. New York: Columbia University Press; 2006.

    Google Scholar 

  8. Healthy People 2020 [internet]. Washington D.C.: Sexually Transmitted Diseases; c2020 [cited 2020 April 17]. Sexually Transmitted Diseases; [about 4 screens]. Available from

  9. Owusu-Edusei K, Chesson HW, Gift TL, Tao G, Mahajan R, Ocfemia M, et al. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex Transm Dis. 2013;40(3):197–201.

    Article  Google Scholar 

  10. Alirol E, Wi TE, Bala M, Bazzo M, Chen X, Deal C, et al. Multidrug-resistant gonorrhea: a research and development roadmap to discover new medicines. PLOS Medicine. 2017;14(7). Accessed 6 Apr 2020.

  11. Centers for Disease Control and Prevention [internet]. Atlanta: The Center; c 2020 [cited 2020 October 10]. Missouri - State Health Profile. [about 4 screens]. Available from

  12. Wu J, Jenerette GD, Buyantuyev A, Redman C. Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States. Ecol Complex. 2011;8(1):1–8.

    Article  Google Scholar 

  13. Davis MJ. The effects of unemployment and poverty on sexual appetite and sexual risk in emerging and young adults. Sex Addict Compuls. 2009;16(4):267–88.

    Article  Google Scholar 

  14. Poundstone KE, Strathdee SA, Celentano DD. The social epidemiology of human immunodeficiency virus/acquired immunodeficiency syndrome. Epidemiol Rev. 2004;26(1). Accessed 30 Apr 2019.

  15. Norris AH, Loewenberg Weisband Y, Wiles M, et al. Prevalence of sexually transmitted infections among Tanzanian migrants: a cross-sectional study. Int J STD AIDS. 2017;28(10). Accessed 5 Apr 2020.

  16. Riemer JW. Job relocation, sources of stress, and sense of home. Community Work Fam. 2000;3(2):205–17.

    Article  Google Scholar 

  17. Open Database: Population MICA [internet]. Jefferson City (MO): Missouri Department of Health and Senior Services. c2020 – [cited 2020 June 10]. Available from

  18. US Census [internet]. Washington D.C.: The Organization; c2019 [cited 2019 June 20]. Small Area Income and Poverty Estimates (SAIPE). Available from

  19. Open database: Data & Statistical Reports [internet]. Jefferson City (MO): Missouri Department of Health and Senior Services. c2020 – [cited 2019 June 19]. Available from

  20. Open Database: AtlasPlus [internet] Atlanta (GA): The Centers for Disease Control and Prevention c 2018 – [cited 2019 June 20]. Available from:

  21. Cavanaugh JE. Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat Probability Lett. 1997;33(2):201–8.

    Article  Google Scholar 

  22. Bozdogan H. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika. 1987;52(3):345–70.

    Article  Google Scholar 

  23. van Wees DA, Heijne J, Basten M, et al. Longitudinal patterns of sexually transmitted infection risk based on psychological characteristics and sexual behavior in heterosexual sexually transmitted infection clinic visitors. Sex Transm Dis. 2020;47(3):171–5.

    Article  Google Scholar 

  24. Wagenmakers E-J, Farrell S. AIC model selection using Akaike weights. Psychon Bull Rev. 2004;11(1):192–6.

    Article  Google Scholar 

Download references


The authors would like to acknowledge Mark Gray and the University of Missouri – Kansas City faculty and staff.


There was no funding utilized in this study.

Author information

Authors and Affiliations



EV analyzed linear regressions and was a major contributor in writing the manuscript. JL was a major contributor in writing the manuscript. AR was a major contributor to running and analyzing the AIC statistics. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ella Valleroy.

Ethics declarations

Ethics approval and consent to participate

This study was approved through the University of Missouri -Kansas City under IRB project number 2015743.

Consent for publication

This study did not use any personal data taken from humans. All data on disease cases were de-identified and therefore no consent for participation was needed.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valleroy, E., Reed, A. & Lightner, J.S. Population-level predictors of sexually transmitted infection rate changes in Missouri: an ecological study. Arch Public Health 81, 12 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Sexually transmitted infections
  • Population health
  • HIV